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CHAPTERI 

INTRODUCTION 

The dissertation consists of three essays. Each essay is presented in its own chapter 

beginning with chapter n. While each chapter is written as a standalone document, the 

essays complement each other in subject matter, methodology and relevance to the 

econometrics and natural resource economics literature. In particular, the most 

fundamental problem investigated is how can we, as precisely as possible, value non-

market goods without making parametric assumptions that may influence welfare 

estimates. 

In an effort to do just that, I begin in Chapter It by exploring the available 

methodologies that researchers have used in the past. It is apparent that there has been 

concern regarding the bias of parametric estimators. In feet, significant effort has gone 

into devising semi-nonparametric estimators to avoid the pitfalls of parametric models. 

However, to this point there has been no direct comparison of standard parametric models 

to some of the more recent flexible semi-nonparametric models. Moreover, the semi-

nonparametric estimators have not been established to be the best technique in a non-

market valuations setting, although claims of that nature have been made. One 

contribution of chapter n is thus to rigorously compare the standard valuation models to 

the semi-nonparametric models. 

In addition, the generalized maximum entropy estimator is introduced. This estimator 

has an appealing interpretation in information theory and is considered to be a non-

parametric estimator. I adapt the generalized maximum entropy estimator to the 
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valuation framework and compare the performance of this estimator (based on mean-

squared error) against the parametric and semi-nonparametric estimators. The goal is to 

determine which estimators we should be using in applied settings. 

The focus of chapter EH is to estimate the value placed on wedands in Iowa's prairie 

pothole region by Iowa households using the semi-nonparametiic and nonparametric 

estimators developed in chapter n. The data to estimate these models comes from a 

survey sent to Iowa residents in the spring of 1998. The details of the data and the survey 

methodology are described in chapter m. The results indicate that typical Iowa 

households are willing to pay about $1.06 annually to preserve or restore wetlands. The 

results also provide an empirical framework to compare the semi-nonparametric and 

nonparametric methods. 

Chapters n and m explore semi-nonparametric and nonparametric methods when 

using contingent valuation data. In chapter IV, I turn to potentially observed data on 

usage patterns of recreation (often called travel cost data) and consider nonparametric 

approaches to estimate value in this case. I start by appealing to the general axiom of 

revealed preference pioneered by Varian [56] and consider the welfare boimds he 

proposes. Unfortunately, the bounds on welfare measures with this information alone do 

not provide bounds that are tight enough to provide useflil policy information in most 

settings. To improve upon these bounds, I consider possible contingent behavior that the 

applied researcher may have. Armed with this stated preference data, I use standard 

Hicksian welfare theory to develop tighter bounds on value. The exciting aspect of this 

methodology is that the bounds thus derived are guaranteed to be accurate so long as 
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preferences are consistent witli standard neoclassical utility theory. The remaining 

question is, are the bounds tight enough to meaningfiilly measure value for goods? To 

answer this question, a Monte Carlo &q)eriment is undertaken that compares traditional 

parametric approaches to the non-parametric bounds generated by this theory. As this 

chapter demonstrates, the Monte Carlo results suggest that there are situations in which 

the nonparametric bounds will be quite informative. It is worth emphasizing again that, 

in all instances, due to the lack of restrictions on preferences, the nonparametric boimds 

are always true bounds. This chapter suggests that future research efforts designed to 

value environmental amenities should seriously consider the use of nonparametric boimds 

to avoid the potential pitfalls of the parametric estimators. 

The three essays comprising this dissertation contribute to the knowledge of the 

economics valuation literature in several important ways. First, semi-nonparametric and 

nonparametric estimators are rigorously assessed in a Monte Carlo study to determine if a 

methodology exists that does not rely upon the accuracy of parametric statements. The 

generalized maximum entropy framewoiic is adapted to the discrete choice contingent 

valuation method. In addition, we investigate semi-nonparametric models in order to 

evaluate their fitting ability in this discrete choice setting. The estimators are applied to 

an important policy setting; namely, the valuation of wetlands in Iowa's prairie pothole 

region. Finally, the nonparametric method of Varian is adapted and extended to provide 

meaningful lower and upper bounds on welfare measures. 
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CHAPTERn 

ROBUST ESTIMATORS OF WILLINGNESS TO PAY IN THE DICHOTOMOUS 

CHOICE CONTINGENT VALUATION FRAMEWORK 

Introduction 

Welfare analysis in the environmental arena is often complicated by absence of 

observable market transactions (i.e., revealed preferences) from which to infer the value 

placed in an environmental good or service. To fill this void, many researchers have 

turned to the stated preference methods of Contingent Valuation (CV). Dichotomous 

choice CV, in particular, has come to dominate much of this literature. Within this 

framework, survey respondents are presented with a hypothetical change in 

environmental quality and, in the case of a quality improvement, a proposed cost of 

acquiring the change. The individual's willingness to incur the proposed costs reveals 

information about the value placed in the environmental improvements. Unfortunately, 

the standard procedures for extracting the implied willingness-to-pay (WTP) of an 

individual, as well as the distribution of WTP in a target population, rely heavily upon 

parametric assumptions regarding the nature of consumer preferences. For example, 

Cameron's [8] bid function approach begins by segmenting the individual's WTP into 

two components; (1) a nonstochastic bid fiinction that is assumed to depend upon 

observed characteristics of the individual and the environmental attributes being valued 

and (2) a stochastic component or residual used to capture variations in preferences. 

Typically, researchers then make parametric assumptions regarding both the functional 

form of the WTP and the distribution of the error term, estimating the model via 

maximum likelihood techniques. Theory, however, provides us with little guidance 



www.manaraa.com

5 

regarding the appropriate parametric specifications to use and the resulting WTP 

estimates can be quite sensitive to the selections made/ 

The possible bias of parametric estimators has received considerable attention in 

the general discrete choice literature (e.g., Manski [42], Cosslett [14], Stoker [55], and 

Matzkin [44]), with studies appearing directly in the CV literature only more recently 

(e.g., Kristrom [39], Chen and Randall [11], and Creel and Loomis [17]). Yet, while a 

variety of nonparametric and semi-parametric estimators have been proposed, only 

limited information exists on the gains (or losses) of these estimators relative to the 

standard parametric procedures, or of the Actors that are likely to influence these gains. ̂ 

The purpose of this paper is to partially fill this gap. We contrast the performance of 

several parametric and nonparametric estimators that have been proposed in the literature 

' It should be noted that valuation efibrts based upon revealed preferences (e.g., 

recreation demand models) are also not immune to die problems of model specification. See, for 

example. Creel [15], Kling [37], Herriges and Kling [29], and Ziemer et al. [62], 

~ Three notable exceptions are Manksi and Thompson [43]; Horowitz [30]; and Huang, 

Nychka and Smith [32]. The current p^)er differs fix>m die first two studies in that [43] and [30] 

investigate die (^leradcmal characteristics of the mayinniin score estimator, ^^ch has received 

little attention in the valuation literature because its implementation can be difficult hi contrast, 

both of the semi-noi^iarametric estimators considered in this paper can be implemented using 

readily available (^itimization routines. The third study, [32], focuses on the relative performance 

of the noiqiarametric cubic smoothing spline, which does not allow for die conditioning of 

willingness^o-pay on individual characteristics, such as age or income. Both of the semi-

noiq>arametric methods investigated here allow for conditioning variables. Furthermore, Huang, 

Nychka and Smith start with the specification of an individual's indirect utility function, as in 

Hanemann [27], whereas we begin by identifying the bid function, as in Cameron [8]. A 

comparison of results is provided in die Monte Carlo Section below. 
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using a Monte Carlo firamework, examining the sensitivity of the resulting WTP 

estimates to the underlying distribution of preferences and the estimation procedure 

employed. In process, we provide an adaptation of the Generalized Maximum Entropy 

(GME) estimator introduced by Golan, Judge and Perloff [25] to the contingent valuation 

problem. 

The remainder of the paper is divided into six sections. Section n provides a brief 

overview of the dichotomous choice contingent valuation method and sets up much of the 

paper's notation. We then describe in Section m the four estimators to be contrasted in 

our Monte Carlo analysis. These include the parametric probit and log-probit models 

used extensively in the CV literature, Chen and Randall's [11] semi-nonparametric (SNP) 

estimator, and an adaptation of the GME estimator of Golan, Judge, and Perloff [25], The 

structure of the Monte Carlo exercise is detailed in Section IV, with the results presented 

in Section V. An application of all four estimators is then presented in Section VI using 

the same data on water quality valuation employed by Chen and Randall [11]. The final 

Section provides the conclusions firom our analysis. 

Dichotomous Choice Contingent Valuation 

The contingent valuation method relies upon surv^ questionnaires to elicit 

information about an individual's evaluation of a nonmarket good or service. While a 

variety of survey formats have been proposed, the referendum or dichotomous choice 

format currently dominates the literature. In this setting, survey respondents are presented 

with hypothetical changes to both an environmental amenity and their level of income. 

The individual's willingness to accept the income change reveals information about the 
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compensadng variation that they associate with the proposed environmental change. This 

information can in turn be used to conduct welfare analysis. 

denote the individual's underlying Avillingness-to-pay for the environmental 

improvement, where X, is a vector of socio-demographic characteristics and ^ is a 

vector of unknown coefficients. The disturbance term is assumed to capture variations 

in preferences within the population including unobserved individual characteristics. Let 

denote the corresponding income reduction, or bid, posed in the CV question. One of 

the advantages of the dichotomous choice format touted in the literature is that it parallels 

the type of decisions typically made by consumers in the marketplace; i.e., accepting or 

rejecting a good or service at a fixed price ( 5^). The key disadvantage of the format is 

that the survey response reveals only limited information about the consumer's 

underlying WTP, bounding above or below the proposed bid. Thus, rather than observing 

the consumer's WTP, the analyst observes only the latent variable no^, where 

Discrete choice econometric methods are then brought to bear on the problem in order to 

characterize the distribution of WTP in the population, rather than the WTP of a given 

In order to fix ideas, consider a proposed environmental improvement. Let^ 

WTP,=W(X„sr,^ (2.1) 

W(X„sr,jS)>B,. 
(2.2) 

^ While we will be employing Cameron's [8] bid function approach to analyzing 

dichotomous dioice C V question, parallel results can be obtain when starting wi& a specification 

of die individual's indirect utility function, as in Hanemann [27]. 
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individual. In particular, it is common practice to assume that the enters the bid 

function ^ in an additive fashion, so that 

= + (2.3) 

where w{X^ -,0) denotes the nonstochastic portion of WTP. The analyst then postulates a 

specific form for the cumulative distribution of ), so that: 

Pi(«o. = 1) = < B,] 

= ^^e,<B-w{X,-p,)] (2.4) 

= A[5, -w(Ar,;>9)]. 

The resulting log-likelihood function is given by 

L = + |;;(1 -no,)ln{l - A[B, - (2.5) 
1=1 i=! 

Maximum likelihood techniques can then applied to estimate the parameters of the 

model. The problem with the standard parametric approach is that it is not clear what 

functional forms should be used in specifying either v{Xr, 0) or A(£, ). 

Alternative Estimators 

A variety of functional forms and estimators have been proposed in the literature for 

estimating the distribution of WTP fiom dichotomous choice CV surveys. In this section, we 

review two parametric and two semi-nonparametric approadies. 

Parametric Estimators 

Among the most common parametric model employed in the CV literature is the 

linear probit model. This specification assumes that"^ 

* The linear Ipgit model is similarly obtained by specifying A to be an extreme value 

distribution. In this case, we would simply replace <J> in the likelihood with die logistic cdf. 
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where ~i.i.d.N{0,af\,) and w{X,;0)si Thus, the probability of a "no" response 

is; 

Pr(«a, = l) = A[S,-^;,Z.] 

(2.7) 

= ̂ 5'sZ.], 

where *!'(•) denotes the standard nonnal cdf, Sff—i_5f,^,Sfn,...,Sfn )'s(<r-',-<r;,X)'; and 

Z^ = {B,,X,') The corresponding log-Iikelihood is given by: 

= Y,"o. ln[(D(J;,Z,)]+X(l-«o,)lii[l- W;,Z,)]. (2.8) 
r=l x=l 

An important attribute of the linear probit model in the CV setting is that, unlike most 

probit applications, the dispersion of WTP in the population (captured by cT v ) can be 

separately identified (Cameron [8]). This is accomplished by varying the bids (i.e., 

the B, 's) across observations. In particular, if denotes the element of the maximum 

likelihood estimate of , then oTf, = . The original parameter vector can likewise be 

recovered using . Finally, we note that in the probit framework both the 

conditional mean WTP i/^x - EiwrP\X^) and the conditional median WTP 

(m_r s MedicaiijVrP\X)) are given by 

Hx=mx=P'̂ X,. (2.9) 

The conditional dispersion of WTP in the population is given by 

s StdDev{WrF\X) = (2.10) 



www.manaraa.com

10 

Another commonly employed parametric estimator is the linear log-probit model. 

Here, it is assumed that the bid flmction takes the form 

= (2.11) 

where , or equivaleutly 

= (2.12) 

The corresponding likelihood is 

L, =|;no,ln[<D(JlZ,)] + X(l-"®.)I^[l-WIZ,)], (2.13) 
/=! /=! 

where Z, - [ln(5J,A '̂]'. Again, = ^Jjand . In the case of the lognormal 

specification, the conditional mean WTP is given by: 

= 4exp(y31 AT, + e^)] = exp|^>91X. (2.14) 

whereas the conditional median WTP corresponds to in_f = exp{fi'j^X,). Finally, the 

conditional dispersion of WTP in the population is given by; 

= exp(^l X )^exp(2oi)-exp(oi) (2.15) 

A Semi-Nonparametric Estimator 

A number of authors have recently proposed relaxing the restrictions of the 

standard parametric models, relying instead on finable approximations to the unknown 

distribution preferences. In particular, Chen and Randall [11] have proposed a semi-
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nonparametric (SNP) estimator for WTP/" The authors begin by assuming that the bid 

function has the structure; 

= (2.16) 

where G{X,-,fis) is an unknown function characterizing the nonstochastic portion of 

willingness-to-pay and is an unknown disturbance term with an unknown distribution. 

Chen and Randall [11] use the exponential form for G{X,;fis), together with the 

restriction that e^, has support only for nonnegative values, to ensure that willingness-to-

pay is nonnegative, i.e. WTP^ > 0. This structure for the bid function then implies that; 

Pr[«o, = l] = Pr[G(X,;yffs)£'j, < 5,] 

G(X,;A) 

\G{X-fis) 
= A[«.] 

(2.17) 

where 

u , ^  ^  .  ( 2 . 1 8 )  
' G{Xr,P,) 

In order to reduce the reliance on a specific model parameterization, the authors use 

flexible approximations to the two unknown functions of the model; G() and A(). 

Gallant's [21] Fourier Flexible Form (FFF) is used to model the nonstochastic 

portion of the individual's bid fimction. That is, yv{X-,fis) is approximated by;® 

^ Creel and Loomis [17] develop a similar estimator, beginning from a specification of tbe 

consmner's indirect utility function (as in H^emann [27]), rather tiiat starting with bid function. 
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N 

<1=1 V, j=l / (2.19) 

where is the AT x I vector consisting of the elements of X, excluding any constant 

term. 

denotes the parameters of the Fourier approximation, and ) denotes the vector of 

corresponding transformations of , including linear and quadratic terms in r. and the 

cos(7>r^x,) and sa^jK'̂ x^ transformations. The 's are Ky.\ multiple index vectors 

used to construct all possible elementary combinations of the explanatory variables (i.e., 

the X,) and their multiples. For racample, as Chen and Randall [11] note, the typical 's 

when would include (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,-1,0), (1,0,-

1), etc. The number of these multiple indices (A) and the number of multiples (J) 

determines the degree of truncation being used in the Fourier series to approximate 

H'(X;^s). Both^ andy, along with the specific ic '̂sto be used, must be selected by the 

analyst. Some guidance regarding these choices is provided in the literature. For example, 

Chen and Randall [11] indicate that, in practice, analysts rely on only a subset of the 

A 

(2.20) 

(2.21) 

^ The notation used in this section is similar to Chen and Randall [11]. Additional details 

regarding the Fourier form and its characteristics can be found in Chen and Randall [11], Creel 

[16], and Gallant [21,22], 



www.manaraa.com

13 

possible muJtipie indices, excluding those indices that do not . provide further 

statistical improvements" [11, p. 331], As a guide to specific choice of specific indices. 

Gallant [21] notes that the length of the 's is typically no more than 2 or 3? This 

would rule out, for ocample, the multiple index = (1,-2,1)'. Finally, Creel [16] 

observes that, in practice, J is usually only 1 or 2. In Chen and Randall's [11] original 

application, the authors chose J=A=l, with /r, = (1,0,0). They note that adding multi-

indices or increasing J did not significantly increase the likelihood function. 

Given the Fourier form approximation to the nonstochastic fimction 

G{X,;fis) in equation (2.16) is then approximated by: 

= expK(Ar,;^^)]. (2.22) 

The second unknown function in modeling CV bid responses is the 

distribution A( ). Here the authors rely upon a variant of Gallant and Nychka's [23] semi-

nonparametric estimation procedure. The heart of this procedure is the specification of a 

monotonia transformation ofthe error term such that 

r[/«(«,)] = A[«,]. (2.23) 

where r( ) is a known distribution (e.g. the exponential distribution). While the 

appropriate monotonic transformation fimction is unknown, Chen and Randall 

approximate h{-) using the polynomial series; 

^ The length of a vector in the case of elementary multiple indices coiresponds to the 

sum of the absolute value of its components. 
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KiM) = Y^ +/(ri 
0 

This structure ensures that the transformation is indeed monotonic. 

(2.24) 

Substituting the approximations to M') > log-likelihood function 

corresponding to the model in equation (2.5) becomes; 

Lj=5^«o,ln-^r 
[GAXr,Sj) 

+X(i-/7o,)inh-r 
|sl 

B. 
VG^{X,-5^) 

(2.25) 

One of the advantages of the Chen and Randall [11] estimator is that is can be 

implemented using standard maximimi likelihood routines. Furthermore, the authors 

prove that if the tnmcation poims used in the two approximations {JA and r) are increased 

as the sample size n increases, the maximum likelihood estimates of both 

A,(w^) s )j will converge uniformly and almost surely to the underlying functions 

y/{X,-,ps) and . 

The conditional mean WTP is obtained by taking the expected value of equation 

(2.16), yielding 

(2.26) 

This calculation is performed using numerical integration. The semi-nonparametric 

model's estimated of the conditional median WTP solves 

nty 
=lll(2) (2.27) 

Due to the nonlinear nature of the problem, a closed form solution for is not readily 

available. Hence, we solve for median WTP via numerical bisection. In general, the 
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estimated median WTP will not be equivalent to mean WTP. Finally, the conditional 

dispersion of WTP in the population is given by 

ix (2.28) 

A Generalized Maximum Entropy Estimator 

Another alternative to standard parametric estimators can be constructed using 

maximum entropy econometrics.® The entropy framework has its roots in information 

theory and the physical sciences, with Boltzman suggesting as early as the 1870*s that 

entropy be used to measure the information content of a distribution. Formally, the 

entropy index for a discrete distribution is given by; 

H{p)^-'̂ p^\n{pj). (2.29) 
j=i 

where Pj denotes the probability that theevent occurs and m denotes the total nimiber 

of possible events. Shannon [53] employed entropy as a measure of uncertainty in 

communications signals. It was Jaynes [33,34], however, that pioneered the use of the 

entropy metric as the basis for estimation and inference, particularly for problems that are 

ill defined or intractable using standard statistical procedures. I£s maximum entropy 

principle argued for selection of the choice probabilities so as to minimize the 

information structure imposed on the distribution (i.e., maximize the distribution's 

' The generalized maximum entropy approach is a relatively recent addition to the 

econometrics literature. For the sake of brevity, however, this section provides only a brief review 

of mavitniiTTi entiopy paradigm. A more comprehensive treatment can be found in Golan, Judge 

and Miller's [24] monogr^h on entropy econometrics. 
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entropy) and yet remained consistent with the observed data. Golan, Judge and Nfiller 

[24] later generalized the maximum entropy approach to allow for noise in the data, with 

Golan, Judge, and Perlofif [25] adapting the approach to the analysis multinomial 

response data. It is the Generalized Maximimi Entropy (or GME) estimator of Golan, 

Judge, and PerlofiF[25] that we adapt to the dichotomous choice CV problem. 

In the bivariate discrete choice framework, where the analyst observes either 

no^ = I or no. = 0, the maximum entropy (ME) estimator is obtained by solving the 

problem; 

MaxH{p) = K/'. )+(1- a - Pi)] (2-30) 
" /=I 

subject to the K moment conditions; 

Z'no = Z'p (2.31) 

where no is the N x 1 vector whose element is no^, p, = Pr[/jo, = l] = ) > ^nd Z is 

the N xK matrix of covariates assumed to influence the choice probabilities. As several 

authors note (e.g., [24], [25], and [54]), an interesting feature of the ME estimator is that 

the resulting first order conditions are identical to those obtained when A(-) is assumed to 

be the logistic cdf and maximum likelihood procedures are used. Thus, the fitted choice 

probabilities obtain from the commonly used linear logit model are the same as those 

obtained using the ME estimator. 

The problem with the ME estimator is that it assumes that the moment conditions 

in equation (2.31) are non-stochastic. The generalized maximum entropy estimator 

relaxes this assumption, allowing for an unobserved source of noise and replacing 

equation (2.31) with 
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Z'no = Z'p + Z'e = Z'{p+e) (2.32) 

where e is the A'̂  x 1 unobserved disturbance vector. Following Golan, Judge and PerlofiF 

[25], the random disturbance is assumed to have a finite nimiber of support points 

(v,,f = l,...,r) in the interval [-1,1]. Letting = Pr(e, = v,), the noise term can be written 

in matrix notation as 

e=Vq = (2.33) 

The generalized maximum entropy problem becomes one of choosing both the choice 

probabilities (i.e., the 's) and noise probabilities (i.e., the 's) optimally. Formally, 

this involves solving; 

M < a H { p , q )  =  - ^ { p , ] i i . { P i ) - ^ i \ - ( 2 - 3 4 )  

subject to 

and 

Z'no, =Z'p + Z'Vq (2.35) 

V/ = 1,...,A^. (2.36) 
/=! 

The above problem involves solving for n unknown probabilities (i.e., the 's) and nT 

error weights (i.e. ,  the q„'s) using the K+1 data constraints in equation (2.35) and the N 

adding-up constraints in equation (2.36). While the above problem can be solved using 

standard numerical procedures, Golan, Judge and Nfiller [24] argue that it is typically 

easier to solve the equivalent dual problem 
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M^C^^no '̂Z, +2ln(Q,) + l;in(^,)-nin(7'), (2.37) 
1=1 1=1 1=1 

where 

Q=l+e-'i'̂ - (2.38) 

(2.39) 
/=( 

and X is a (AT +1) X1 vector of parameters. The resulting choice probabilities become 

P = (2.40) 

Equation (2.40) makes clear the similarity between the GME estimator and the standard 

linear logit model. In general, the GME estimator is a shrinkage estimator. The structure 

of the error support (v) will imply how "close" the GME estimator is to the logit 

estimator asymptotically. As the error support vector widens in coverage of the interval 

[-1,1], the GME estimates collapse to the origirL As the error support vector narrows 

around zero, the estimates converge to the ML logit estimates. Allowing v to be wide 

imposes the most shrinkage on the estimates, which includes the benefit of smaller 

variance properties. Setting v to be narrow permits the most freedom for the estimates to 

deviate from zero, however, the cost is less flexibility in the stochastic characterization of 

the model. 

Golan, Judge and Perlofif [25] take v to be symmetric about zero with endpoints 

]. As the sample size gets large, the GME estimator converges to the ML 

logit estimator. Interestingly, altering the error support vector to be symmetric about zero 

with endpoints [-] implies the GME estimator outperforms the probit model 
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even when the true model is probit (this is shown for a standard normal error distribution 

by Golan, Judge and Nfiller [24]). When the true error distribution is not standard and we 

are forced to estimate the variance, the dominance of the GME estimator wanes. In this 

case, the GME estimator only marginally outperforms the probit model. 

Up imtil this point, we have reviewed the GME estimator for the bivariate discrete 

choice problem in general terms. Adapting it to the dichotomous choice CV problem is 

straightforward. We have that 

p, = Prf/T<7. = l] 
l . j  ( 2 . 4 1 )  

= K5'oZ). 

A comparison to equation (2.7), suggests that the analogue to the linear probit model 

emerges if we set Z, = ,-Ar/]' and 6^ = • Using the fact that the choice 

probabilities in equation (2.40) have a logistic form, both the conditional mean and 

median WTP are given by 

(2.42) 

with the conditional dispersion of WTP in the targeted population given by 

(2.43) 

Design of the Monte Carlo Study 

The estimators detailed in the previous section provide ahemative approaches to 

analyzing consumer responses to dichotomous choice CV questionnaires. In this section, 

we describe a Monte Carlo experiment designed to investigate and contrast the 

performance of these approaches in estimating the characteristics of WTP in a target 

population, including the mean and median WTP and its dispersion in the population. 
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The Monte Carlo experiment centers around the construction of an underlying true" 

distiibution of WTP. We consider four basic distributicHis: normal, lognonnaL, uniform and a 

bimodal distiibution. The first two distributions provide settings in which the two parametric 

approaches (probit and log-probit respectively) provide the correct specifications. The unifonn 

and bimodal distributions were chosen to test more extreme departures fixim the standard 

parametric assunqjtions. The bimodal distribution is constructed as a combination of two standard 

normal peculations, displace fix>m each other by a fixed constant in terms of WTP. This might 

arise in practice if a significant discrete characteristic of the population (e.g., gender) were 

excluded fix)m the specification of the nonstochastic portion of the bid function (i.e., h'( ). 

Table 2.1 summarizes the four basic distributions considered. The second column provides 

the equations iised to generate observations on WTP^ for each of the ^ue" distributions. A simple 

linear form was used for the nonstochastic portion of die bid function, hi particular, it was 

assumed that 

where = 2 and is a single covariate distributed uniformly on the interval [-30,30]. 

yffo was selected for each distribution to insure that the mean WT? was equal to 100. The 

stochastic component for each of the true distributions was then generated according to 

the specification in the last column of Table 2.1. The parameter cr^ measures the 

dispersion of WTP. for the typical consumer (i.e., AT, = 0) in the population. Formally, 

<7ir=VafiWTP,\X,=0) (2.45) 

Four dispersion levels were investigated in the Monte Carlo analysis, with =5,10, 25 
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and 50. Finally, given observations on WTP^, simulated survey responses to bid values in 

a dichotomous choice CV questionnaire (i.e., no. 's) were constructed. In all of the Monte 

Carlo e3q}eriments, we employed a bid design in which the sample was evenly divided 

into five group, &cing bids (i.e., 5, 's) of25, 50, 75, 125 or 175 respectively. 

For each of the sixteen possible true distributions (i.e., four distribution types and 

four dispersion levels), T=500 samples of size N=300 were drawn. The four estimators 

described in the previous section were then applied each sample to estimate the mean, 

median, and dispersion of WTP in the population. The probit, log-probit, and GME 

estimators assumed the simple linear form in equation (2.3) for the bid function. For the 

Chen and Randall [11] semi-nonparametric estimator, we used the Fourier form; 

w,{X,;S) = d, +S,co^X,) + S,sin{X,) (2.46) 

where X, = 2jr{X^ + 30) / 60, transforming the covariate X, to lie in the interval [0,2;r]. 

Monte Carlo Results 

The primary purpose of CV analysis is typically to characterize the distribution of 

WTP for a specific enviroimiental amenity. Thus, we do not report individual parameters, 

restricting our attention instead to the performance of the models in terms of estimating 

the conditional mean and median WTP of the typical observation (i.e., and , 

respectively) and the dispersion of WTP in the sample population (i.e., ). Starting with 

the conditional mean. Table 2.2 provides a summary of the root mean squared error 

(RMSE) in estimating using the four estimators for each of the sixteen assumed true 

distributions. Bold numbers are used for the lowest RMSE within each distribution. 
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Table 2.1: Monte Carlo Distributions 

Distribution WTP, Error Generation 

Normal 
WTP, = -^Sfa 
yff ^ 0=100 

Log-normal 
WTP, = exp(>5j.o + ) 

A.=ta(100)-iln[l+(c7,/100)'] 
f^ ~ i V (0,lii[l+(o-^/100)']) 

Bimodal 

WTF, = ̂ 30 
Abo =100 

fl P, >05 
\-l  p,<^5 

^u~MO,l) 

A = Voi-l 
p, ~ C/«/^r7«[0,l] 

Uniform 
= Puo + fi\ .̂ + % 

fiu, = 100 

d, ~Uniforrr{-a,a] 

a = ycr^VU 
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A number of patterns emerge from Table 2.2. First, as one might expect, the probit 

model has the lowest RMSE when the underlying distribution is normal and the log-

probit model typically performs best when the underlying distribution is lognormal. What 

is perhaps more surprising is the generally strong performance of probit for all of the 

assumed distributions. The probit estimator yields the lowest RMSE for 12 of the 16 

specifications. Furthermore, even when probit is outperformed by one of the other 

estimators, the difference is not substantial. The largest difference emerges when the true 

distribution is lognormal and cr,^ = 25, with the probit model having a RMSE only 16 

percentage points higher than the log-probit model. The GME estimator yields generally 

similar RMSE's, outperforming probit in one case.' The same cannot be said for the log-

Probit's model. The log-probit model's performance is often substantially worse than 

that of the simple probit model, particularly when there is sizable dispersion in WTP. 

When ar^= 50, the RMSE for the log-probit model is between 2.5 and 3 times the RMSE 

for probit. Finally, we note that the semi-nonparametric (SNP) estimator generally does 

well when the underlying true distribution is relatively smooth. However,when there is a 

high degree of curvature in the underlying density flmction (as there is with the bimodal 

' This should not be too surprising, given the good fit of the probit model, tiie well known 

similarity between the linear probit and linear logit estimators, and the relationship between the 

GME and logit estimators asymptotically. 
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Table 2^: RMSE in Estimating the Conditional Mean WTP (//^) 

a. Normal Distribution 

Estimator O-r =5 II o
 II b^ o

 II b^ 

Probit 1.5 2.0 3.1 4.6 
Log-Probit 3.7 5.0 8.4 13.4 
SNP 3.3 3.1 5.3 13.8 
GME 1.7 2.2 3.0 4.7 

b. Lognormal Distribution 

Estimator 

II o
 II b^ cr^=25 

o
 II b^ 

Probit 3.2 3.4 5.0 4.4 
Log-Probit 13 2.1 4.3 11.3 
SNP 4.1 3.0 5.4 8.1 
GME 4.2 4.1 4.6 4.5 

c. Bimodal Distribution 

Estimator 11 

o
 II b^ II ^.=50 

Probit 1.7 2.6 3.9 6.4 
Log-Probit 3.9 5.9 11.3 16.3 
SNP 3.2 3.8 13.0 56.5 
GME 2.0 2.7 7.6 6.5 

d. Uniform Distribution 

Estimator <Ty =5 

o
 II b^ II b^ =50 

Probit 1.4 2.1 3.2 5.2 
Log-Probit 3.6 4.4 8.3 15.0 
SNP 3.3 2.9 5.5 18.4 
GME 1.7 2.5 3.3 5.4 



www.manaraa.com

25 

model when cr^ = 50 ), the quadratic approximation to A( ) appears to be insufficient, 

with a RMSE of nearly nine times that of the simple probit specification. 

Table 2.3 provides a parallel set of results when the focus in on characterizing the 

condition median WTP (i.e., The findings here basically mirror those in Table 2.2. 

Again, all of the estimators perform well when there is little variability in the underlying 

population. However, when level of dispersion is high, as is typically the case in actual 

CV work, the RMSE of the estimated varies substantially fi-om estimator to estimator. 

While the performance of the simple probit model is not quite as strong as when we focus 

on the mean, it still yields the lowest RMSE in 11 of the 16 cases. Again, the gains are 

the greatest when there is considerable dispersion in the WTP within the targeted 

population. 

Finally, policy makers are often concerned not only with the central tendencies of 

WTP, but also with its variability or dispersion within a targeted population. Table 2.4 

reports on the ability of the four estimators to characterize the conditional dispersion of 

WTP (df,). Surprisingly, the simple probit model excels in this arena as well. Again, in 12 

of the 16 specifications, the probit model outperforms both log-probit and the two semi-

nonparametric approaches, with a substantially higher RMSE (42% higher) only in the 

This suggests the need for a higher order approximation may be necessary in die case 

to capture the form of the transfotmation fimction h{-). Alternatively, an alteniative to die 

ejqionential kemal r(-) may inqiiove the overall fit of the model. However, preliminary 

investigations along this line did not yidd substantial improvements in the RMSE for the SNP 

estimator. 
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case of the lognormal distribution when =50. The probit model substantially 

outperforms the other three q}proaches when the underlying distribution of preferences 

has a substantial dispersion and is either bimodal or uniform. The RSME of the probit 

specification is typically 30 to 40 percent of the RMSE obtained by either the log-probit 

or SNP estimators. While the GME estimator sometimes matches the performance of the 

probit model, particularly when the level of dispersion is high, the RMSE in estimating 

dg is substantial when the degree of dispersion is small. 

The strong performance of the probit specification highlighted in Table 2.3 

through S is consistent with earlier comparisons of parametric and nonparametric 

estimators. Both Horowitz [30] and Manski and Thompson [43] found that the logit 

model, similar in nature to probit, typically dominated the more flexible maximiun score 

estimators. Similarly, Huang, Nychka, and Smith [32] found that conventional probit and 

logit models outperformed cubic smoothing splines. One explanation for the relatively 

poor performance of the semi-nonparametric estimators is that, by their nature, they rely 

more heavily upon the data to reveal the shape of the underlying WTP distribution, rather 

than assumed distributional structures. As Creel and Loomis [17] note, this suggests that 

they may require both a greater number and range of bid values in order to capture the 

shape of the underlying WTP distribution. While a full-scale investigation into bid design 

is beyond the scope of the current paper. Table 2.5 reports on a simple investigation into 

the performance of the SNP estimator given a range of bid designs, increasing in 

complexity from four bid levels to 79 bid levels. The five designs considered place an 

equal number of bids at various percentiles of the underlying true distribution, with each 

subsequent bid 
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Table 2^: RMSE in Estimating the Conditional Median WTP (iRg) 

a. Normal Distribution 

Estimator II 

o
 

II b^ II b^ II o
 

Probit 1.5 2.0 3.1 4.6 
Log-Probit 3.6 4.4 4.9 10.8 
SNP 2.6 3.2 4.2 5.9 
GME 1.7 2.2 3.0 4.7 

b. Lognormal Distribution 

Estimator 

II II o
 

II b^ II o
 

Probit 3.4 3.8 7.5 11.9 
Log-Probit 1.3 2.0 4.3 11.8 
SNP 1.6 2.0 5.1 10.4 
GME 4.4 4.5 7.1 11.1 

c. Bimodal Distribution 

Estimator 
II b^ o
 II b^ II b^ II o

 

Probit 1.7 2.6 3.9 6.4 
Log-Probit 3.7 4.8 4.8 47.7 
SNP 2.7 3.9 21.8 17.0 
GME 2.0 2.7 7.6 6.5 

d. Uniform Distribution 

Estimator <7^=5 II O
 II b^ o

 II b^ 

Probit 1.4 2.1 3.2 5.2 
Log-Probit 3.5 3.9 5.4 12.2 
SNP 2.6 2.9 4.9 8.0 
GME 1.7 2.5 3.3 5.4 
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Table 2.4: RMSE in Estimating the Conditional Dispersion of WTP ) 

a. Normal Distribution 
Estimator <7^=5 

o
 II II b^ o-r=50 

Probit 1.7 1.9 2.9 4.9 
Log-Probit L8 2.4 4.7 15.3 
SNP 23.8 19.1 6.1 12.6 
GME 13.5 10.1 4.4 6.9 

b. Lognormal Distribution 
Estimator <7^=5 II O

 

(7^=25 cr, =50 
Probit 1.5 2.3 3.3 8.5 
Log-Probit 1.5 2.2 3.4 7.8 
SNP 23.6 19.2 5.9 8.4 
GME 14.1 10.2 3.5 6.0 

c. Bimodal Distribution 

Estimator ^(T ~ 5 

o
 II b^ II b^ o
 II b^ 

Probit 1.9 4.1 10.2 27.2 
Log-Probit 2.5 5.6 16.2 67.1 
SNP 23.9 19.5 43.3 67.9 
GME 14.0 11.9 80.2 35.5 

d. Uniform Distribution 

Estimator <̂ w =5 =10 II b^ cr,=50 

Probit 1.7 1.8 3.1 6.0 
Log-Probit 1.7 2.2 2.9 18.7 
SNP 23.8 19.2 6.0 19.5 
GME 13.5 10.1 3.5 10.8 
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Table 2.5: Sensitivity of SNP Approach to Bid Design 

Design RM [SE 
Number 
of Bids 

Percentiles at which bids were 
evenly spaced 

do 

4 20%,40%,60%,80% 60.2 190.0 
9 10%,20%,...,90% 26.3 80.3 
19 5%, 10%, 15%,...,95% 30.3 65.6 
39 2.5%,5%,7.5%,.. .,97.5% 37.8 75.9 
79 1.25%,2.5%,3.75%,.. .,98.75% 33.4 43.9 

design essentially doubling the number of bids. As expected, increasing the number and 

range of the bids does alter the performance of the SNP estimator. However, as in the 

parametric bid design literature (e.g. Kanninen [36]), the best design for estimating 

differs from the best design for estimating . Estimating the dispersion of WTP benefits 

substantially from a finer and wider range of bids, whereas estimates of the mean WTP 

are best with relatively few bid levels. 

Empirical Application 

A common criticism of Monte Carlo studies is that they lack a basis in the real 

world. Analysts must specify the underlying distributions and functions and choose 

which characteristics to vary in their experiment. While the hope is always that the 

choices made bound what one would find in practice, there is always the concern that 

Forthis example, we assumed that WTP was nomially distributed, with a mean WTP 

of250 and a dispersion level of ar^ = 100. 
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some critical dimension of the problem has been missed.^ In order to provide additional 

insight, it is helpful to provide an empirical example. Here, we use the same data base as 

Chen and Randall [11] employed as an application. The data were obtained from a 

dichotomous choice CV study design to value improvements to environmental quality of 

Big Darby Creek in Ohio. The survey was conducted in 1989, yielding information on 

274 Ohio residents visiting Battelle-Darby Creek Park. Table 2.6 provides a summary of 

the individual characteristics, while Table 2.7 provides the pattern of responses obtained 

in the dichotomous choice CV question. Notice that the survey responses suggest a 

median WTP of roughly $75, given that 50.9% percent of the population was willing to 

pay this amount for the water quality improvements. Less than forty percent of the 

sample was willing to pay $150. 

Table 2.8 provides the mean WTP for the water quality improvements using the 

four estimators. The probit, log-probit, and GME approaches all yield estimates of the 

mean WTP that lie in the range from $80 to $100. The SNP approach, however, yields a 

WTP estimate that is roughly four times as large as any of the other approaches. These 

findings are consistent with the results of the Monte Carlo analysis, fii particular, the 

performance of the SNP estimator is at its worst when there is high level of variability in 

the underlying distribution of WTP and when the distribution is bimodal, as Chen and 

Randall [11, P- 334] in their application. The general consistency of the mean WTP 

Analysts will often attempt to minimize this problem by basing the basic model on 

results obtained previously in die literature. In tiiis case, for example, a mean WTP of 100 was 

chosen to mimic the empirical results obtained in Chen and Randall [11]. 
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Table 2.6: Survey Respondent Characteristics 

Standard 
Variable Mean Deviation 

Price ( 5;) 55.9 50.6 
Age 41.4 14.3 

Gender 0.50 0.50 
Schooling 0.34 0.47 

Table 2.7: Survey Response Patterns 

Bid Percent "No 
$10 28.3 
$20 17.6 
$30 44.8 
$75 49.1 
$150 61.5 

Table 2.8: Estimated Mean WTP for Ohio River 

Estimated Mean 
WTP 
86.51 

(51.15) 
97.66 

(91.22) 
391.75 

(407.75) 
86.44 

(52.15) 

Estimator 

Probit 

Log-Probit 

SNP 

GME 
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estimates when the other three estimators provides some reassurance that the true mean 

WTP is on the order of $90, it is not precisely measured with any of the models given the 

limited sample size. 

Conclusions 

The purpose of this paper was two-fold, providing an adaptation of the GME 

estimator to the problem of estimating WTP given dichotomous choice CV data and 

investigating the relative performance of both parametric and semi-nonparametric 

estimators using Monte Carlo analysis. One reason for developing and using less 

parametric approaches is that they, hope&lly, limit the role and impact of model 

specification on the resulting estimates of WTP. Our results, however, suggest that 

nonparametric and semi-nonparametric approaches are not, as yet, a panacea for the 

problems encountered in using parametric estimators. In &ct, the simple linear probit 

model typically provided the best in estimating the conditional mean and median WTP 

and its dispersion in the sample, regardless of whether the true distribution of WTP was 

normal, log-normal, uniform, or bimodal. The GME approach also performed well. 

However, the log-probit specification, used extensively in the literature to impose non-

negativity on the distribution of WTP, did not perform nearly as well. Finally, the SNP 

estimator did not perform as well when there was substantial curvature in the underlying 

distribution of WTP. Additional research is needed into this estimator in order to 

determine how its performance can be enhanced using alternative degrees of truncation in 

the ^proximating functions and alternative bid designs. 
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CHAPTER m 

ESTIMATING VALUE FOR WETLANDS IN IOWA 

Introducdon 

In the past century, we have witnessed the formation of private organizations whose 

sole purpose is to preserve or restore wetlands (e.g.. Nature Conservancy, Ducks 

Unlimited). Recent projects, such as the North American Waterfowl Management Plan, 

have returned 27,000 acres in Iowa to their original wetland state. This has led to a 

dramatic recovery for many species of birds and plants. The associated gains from flood 

control, water quality improvement, and wildlife habitat have received considerable 

coverage in the media. It is natural to then ask whether there is a role for Iowa's state 

government in assisting these efforts or whether past efforts have brought about the 

optimal level of wetlands in the state as a whole or particular regions. An economic 

benefits and cost analysis could determine if additional restoration efforts to augment 

Iowa's wetlands would be efficient. Unfortunately, policymakers have little information 

regarding the value society associates with wetlands. These values include both 

recreational and non-use values. Many activities are centered in and around wetlands, 

including hiking, biking, bird watching, wildlife viewing, hunting and fishing. Also, 

individuals may value wetland restoration projects because they provide for the option to 

visit them in the future or because they simply value their existence. 

The purpose of this study is to estimate the value Iowa households place on restoring 

wetlands in Iowa's Prairie Pothole Region. The prairie potholes of Iowa are a portion of 

a larger collection of wetlands in the U.S. and Canada known as the Prairie Pothole 
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Region. This region has lost over half of its original wetland acreage. Iowa, in 

particular, has lost over 98% of its pothole acreage. Given the diverse characteristics and 

benefits of wetlands, additional restoration projects are a relevant and a practical policy 

consideration. 

The difficulty in deriving recreational value for wetlands is the problem inherent to all 

public goods. As we discussed in Chapter II, the lack of maiicet-clearing transactions 

implies that economists must rely upon other methods to derive value. Wetlands provide 

habitat for many wildlife species. Thus, the entire area enjoys the benefits provided by 

wetlands. Also, the feet that someone else has visited the site does not prevent others 

from doing the same. These aspects of a public good often mean that the good is under

produced as individuals lack the incentive to maintain it. Furthermore, there is no market 

clearing mechanism economists can refer to in order to measure value of the good in 

question. However, there are implied markets for wetland visitation. With travel cost 

models (see Freeman [20], chapter 8 for a review), the researcher can estimate use values, 

but this would be an incomplete valuation method as it captures only use values and 

ignores non-use values. 

A common alternative methodology is the contingent valuation method (CVM). 

Under this approach researchers elicit values for the good by surveying the target 

population and asking them if they are willing to pay a hypothetical bid amount. These 

are known as dichotomous choice questions. Their advantage is that they are relatively 

easy for individuals to respond to, similar to everyday take-it or leave-it buying decisions. 

To obtain this information, the target population is surveyed. 
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On the other hand, the resulting survey responses are discrete and at most provide 

bounds on each individual's value for the good. That is, the researcher only knows 

whether the subject says "yes" or "no" to any specific bid value. The information content 

of these discrete responses is much less than if the fiill willingness to pay were observed. 

To estimate WTP values with the discrete data, the typical approach requires making 

parametric assumptions regarding a bid fimction and stochastic disturbance term. 

However, researchers have pointed out that estimated values from these models are 

sensitive to the parametric specifications (Hanemann [28], Herriges and Kling [29], Kling 

[37], and Ziemer et al. [62]). That is, it is crucial that the researcher know the precise 

parametric i^mily that generates the data or the resulting estimates will be inconsistent. 

To avoid these influences on estimated values, researchers have suggested more flexible 

methods, such as semi-nonparametric and nonparametric estimators (Cosslett [14], Chen 

and Randall [11], Creel [16], Creel and Loomis [17], Kristrom [39], Manski [42], Manski 

and Thompson [43] and Matzldn [44]). The appealing aspect of these estimators is that 

they do not force the researcher to make parametric specifications and the resulting 

welfare measures will be more robust to various data generating mechanisms. 

The remaining portions of this chapter describe the contingent valuation method, 

alternative parametric and semi-nonparametric dichotomous choice model estimators, the 

design and implementation of the survey instnmient used to elicit values associated with 

Iowa's prairie pothole wetlands, the results of the estimation techniques, and conclusions. 
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Contingent Valuation Method 

As stated above, the goal of this study is to estimate WTP for restoring wetlands to 

Iowa's prairie pothole region among Iowa households. The CV question in the survey 

asks for indixaduals willingness-to-contribute to a fimd that intends to add 2,500 acres of 

land annually over the next 15 years to wetlands in this region. Thus, the value we are 

estimating is Iowa households' WTP for the restoration program. This information can in 

turn be used to conduct welfare analysis and design policies regarding future wetland 

programs. 

In order to fix ideas, let 

WTP,=WiX,,E:,P) (3.1) 

denote the individual's underlying willingness-to-pay for the augmentation to Iowa's 

wetlands, where is a vector of socio-demographic characteristics and ^ is a vector of 

unknown coefBcients. The disturbance term f, is assumed to capture variations in 

preferences within the population including unobserved individual characteristics. Let B, 

denote the corresponding income reduction, or bid, posed in the CV question. One of the 

advantages of the dichotomous choice format is that it parallels the type of decisions 

typically made by consumers in the marketplace; i.e., accepting or rejecting a good or 

service at a fixed price ( ). As noted above, the k^ disadvantage of the format is that 

the survey response reveals only limited information about the consumer's underlying 

WTP, bounding above or below the proposed bid. Thus, rather than observing the 

consumer's WTP, the analyst observes only the latent variable , where 



www.manaraa.com

37 

(3.2) 

We will estimate this bid fimction with a variety of alternative WTP estimators. 

Specifically, the estimators are the probit, log-probit, semi-nonparametric (SNP) and 

generalized maximum entropy estimator (GME). A more developed discussion of these 

estimators was presented in chapter n of this dissertation. 

The reason for considering the various estimation techniques is twofold. First, we 

explore the possible divergence in values of the estimation techniques. Second, as we 

want to arrive at an accurate estimate for Iowa household's value for this restoration 

program, we should consider how sensitive the estimates are to the model assumptions. 

We will now layout the formalities of each estimator. 

Parametric Estimators 

The probit specification assumes: 

where - i.i.d.N{Q,a^„) and yv{X,-,0) = . Thus, the probability of a "no" response 

is: 

(3.3) 

^no,=\) = K[B,-P'^X] 

where <D( ) denotes the standard nonnal cd^ 

Z, = {B, , XPi. The correspondiag log-likelihood is given by: 

(3.4) 
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t=l 1=1 

We can then use maximum likelihood techniques to estimate the unknown parameters. 

This allows us to state the bid function for the wedands restoration program among Iowa 

households as; 

wix„s^,x) = h'^.- (3-6) 

Another commonly employed parametric estimator is the linear log-probit model. 

Here, it is assumed that the bid function takes the form 

W(X„S^M = csp{^'l^.+^U) (3.7) 

where ~i.i.d.NiP,(j]^), or equivalently 

]n[w(x„s^;j3j] = fi',x, (3.8) 

The corresponding likelihood is 

l ,  = x " o , l n [ w l z , ) ] + x ( l - " ° ' ) k l - ( 3 . 9 )  
f=i «=1 

where Z, = [hi(5;),JSr/]'. The corresponding estimate of an individual's bid function for 

the wetlands restoration program among Iowa households is: 

= (3.10) 

A Semi-nonparcanetric Estimator 

Chen and Randall's [11] semi-nonparametric approach begins by assuming that the 

bid function takes the form; 
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W{X,, Ss, M = cx^wiX,-,Ps)]ss = G{X, ;fis)£a (3.11) 

where G{X,;fis) is an unknown function characterizing the nonstochastic portion of 

WTP and fj, comes from an unknown distribution. They use the exponential form for 

G{X,;fis), together with the restriction that ^ support only for nonnegative values 

to ensure that willingness-to-pay is nonnegative, i.e. WTP^ > 0. This structure for the bid 

function then implies that; 

Pr[no, = 1] = Pr[G(^,>S,)f« < 

GiX.M 
= < 

=4^-1 
IGiXrM. 

= A[«J 

(3.12) 

where 

U, s -
' GiXM 

In order to reduce the reliance on a specific model parameterization, the researcher can 

use the flexible approximations to the two unknown functions of the model: G{-) and 

(3.13) 

A() . Chen and Randall [11] suggest the use of a flexible fourier form for G(), with 

(3.14) 

We define; 

A f J ^ 

= Mo Moa sin(y<xj} 
(3.15) 
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where x, is the K x 1 vector consisting of the elements of excluding any constant 

term, 

C = > (3.16) 
osl 

"(Aoj/'OI' 

denotes the parameters of the Fourier approximation, and (^^{X,) denotes the vector of 

coiresponding transformations of X^, including linear and quadratic terms in x, and the 

cos(7>r^xJ and ssd^jK'̂ x,) transformations. The 's are 1 multiple index vectors 

used to construct all possible elementary combinations of the explanatory variables (i.e., 

the X.) and their multiples. 

The second unknown function in modeling CV bid responses is the distribution A( ). 

Here the authors rely upon a variant of Gallant and Nychka's [23] semi-nonparametric 

estimation procedure. The heart of this procedure is the specification of a monotonic 

transformation of the error term such that 

r[A(«,)] = A[«J. (3.18) 

where r( ) is a known distribution (e.g. the e>q)onential distribution). While the 

appropriate monotonic transformation flmction is unknown, Chen and Randall 

approximate />(•) using the polynomial series; 

u 

kim) = r^ +j(ri +^27+—(3.19) 
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This structure ensures that the transfonnation is indeed monotonic. 

For the sake of brevity, we will not motivate these approximations here.' However, 

approximating G( )and A( ) with Gy^( )and r[A;.( )] (respectively) will allow us to 

specify the following likelihood; 

l-s=s«o,lnjr 
n 

+ 2](l-«o,)ln-
>«i 

1-r B. 
(3.20) 

Upon estimating equation (3.20) above, the estimate of an individuals' bid function for 

the wetlands restoration program among Iowa households is: 

ir(x„s^j,) = g^{x,js)f's. (3.21) 

where is the expected value of the estimated density for . That is, with this SNP 

methodology, the distribution of can be estimated. Thus, we can use the estimated 

density of to approximate the true expected value by /if^. 

An advantage of the above procedure is that the researcher is not forced to make 

assumptions regarding the fimctional form of the bid function nor the stochastic 

disturbance tenn. Instead, using flexible approximations with good convergence 

properties, the researcher can get usefiil estimates for the model parameters. Obviously, 

this development is very appealing. However, as demonstrated in chapter n of this 

dissertation, the Monte Cailo results indicate the technique is not completely free of 

parameterization decisions made by the researcher. For example, model estimates are 

sensitive to the specification of the known cdf r(). In an applied framework, it is not 

' This devdqnneiit is provided in greater detail in Chqiterll of this disseitatioa 



www.manaraa.com

42 

clear what choice of r( ) one should employ. Again, this is why we choose to use a 

variety of WTP estimators in this setting. 

A Genercdized McKimum Entropy Estimator 

The final estimator we consider is the generalized maximum entropy estimator. An 

appealing aspect of this estimator is that it minimizes the information structure imposed 

on the distribution while being consistent with the observed data (Golan, Judge, and 

Miller [24]). The objective function is^: 

MaxC = ̂ no,X'Z, +^ln(a,) + ̂ ln(4',)-«hi(r), (3.22) 
i=i i=i /=i 

where 

(3.23) 

(3.24) 

and X is a (Ar+1) X1 vector of parameters and Z is the N matrix of explanatory 

variables. Adapting the GME specification to the dichotomous choice CV problem is 

straightforward if we set Z,=[B,-Xi\ and Estimated WTP for an 

individual is then given by 

(3-25) 

^ The motivatioii and derivation of this objective function is presented ia Chapter n of this disseitatioa 

^ The term ^ is. This derivation is related to the link between the GME and the logit model. 
v 3  
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Survey Design and Implementation 

A blue ribbon panel of economists commissioned by the National Ocean and 

Atmospheric Administration (NO AA) established a set of guidelines concerning survey 

design and implementation for eliciting value, ffighlights of the NO AA panel guidelines 

include (NOAA, [47]): 

• a CV study should describe the population for which the study is attempting to 
value; 

• carefiil pretesting and focus group sessions should be administered; 
• the survey instrument should provide an accurate description of the program; 
• referendum cpiestions should be used in resource valuation; 
• respondents should be reminded of substitutes; 
• the referendum question should be followed up to determine why they 

answered the way they did; 
• the survey should collect information on respondents socio-demographic data 

and prior knowledge; 
• while eliciting these values, the survey instrument should remind respondents 

of their budget constraint; and 
• the respondents should be debriefed regarding their beliefs in the scenarios 

posed. 

In our survey effort, we closely follow the recommendations of the NOAA panel. This 

survey effort itself was funded by the U.S. Enviroimiental Protection Agency. 

The Targeted Good—Iowa Prairie Potholes 

In Iowa, the prairie pothole r^on historically included 7.6 million acres of wetlands. 

By 1980, the wetland composition of the region fell below 30,000 acres (Bishop et al. 

[6]). Private interests controlled only 5,000 acres of this area. Largely, this trend 

reflected the value of land in agricultural production. Private individuals had the 

incentive to install tile drainage systems to prevent water saturation. This was necessary 

to make the land more conducive for agricultural purposes. Bishop et al. [6] suggest: 
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The primary reason for these wetland losses can be traced directly to federal, state 
and local government programs which were enacted for the purpose of draining 
wetlands. These programs, such as the Swamp Land Acts of the 1850s, the 
Reclamation Act of the eariy 1900s and several USD A programs offered cost-
sharing or financial incentives to convert wetlands to productive agricultural land. 
The Flood Control Act of the 1940s authorized the U.S. Army Corps of Engineers 
to construct major drainage outlets and flood control channels which impacted 
riparian wetlands. 

There were some efforts to conserve wetlands during the late 1920s and early 1930s. 

Primarily, these efforts were motivated by waterfowl hunters who were concerned about 

decreasing waterfowl populations. These concerns were reflected in the Migratory Bird 

Conservation Act of 1929 and the NCgratory Bird Himting Stamp Act of 1934. Both of 

these policies enacted by Congress established funds for the purpose of acquiring 

wetlands for their preservation. Despite these early efforts, the trend would be towards 

rapid losses in wetland acreage until the mid-1980s. 

Due to increased knowledge regarding the benefits of wetlands, such as pollution 

mitigation, wildlife habitat, and flood control, several efforts have been aimed at 

protecting or restoring wetlands. Some of these programs include the North American 

Waterfowl Management Plan, North American Wetland Conservation Act, Wetland 

Reserve Program and the Emergency Wetland Reserve Program. As of 1997, total 

acreage restored or protected by these recent programs amount to 84,209 acres (Bishop et 

al, [6]). At least partially due to these gains, populations of many species of birds and 

plants have shown notable increases. Waterfowl populations, which had hit a low during 

the mid-1980s, are now recovering. Populations of mallard and blue-winged teal ducks 

have shown promising increases. Although biologists do not know exactly how 
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populations of birds and other species will respond as more wetlands are restored, it is 

likely that these gains will be maintained or even improved. Likewise, it is expected that 

significant additional gains in flood control and water quality will occur if more wetland 

acres are restored. 

The ability to restore additional wetlands in the Iowa prairie pothole region hinges on 

funding. As part of the North American Wetland Conservation Act, restoration projects 

may receive up to 50% of cost if the state meets the other portion. Given that the per acre 

cost of recent restoration projects was $936, the state needs to provide approximately 

$468 per acre at a minimum to gain the National funding. Thus, estimating an empirical 

value will aid in determining the appropriateness of applying for additional funds through 

the North American Wetland Conservation Act. 

Survey Design 

The final survey instrument was the result of a sequence of design phases, including 

an initial design developed in consultation with wetland experts here at Iowa State 

University and throughout the state. The survey was then subjected to a series of focus 

groups. 

The focus group sessions were used to gauge the respondents understanding of the 

instrument and find any other problems with the survey. The sessions were productive in 

learning how the respondents were interpreting the instrument. Individuals who 

participated in the focus group sessions consisted of a group of wildlife and conservation 

enthusiasts, a group of elementary school parents, and a church group. For participating 

in the focus group the individuals received $10.00. This payment was made to encourage 
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the individuals to review and complete the survey instrument as well as attend the 1-1.5 

hour focus group session. Each focus group had an individual session time and meeting 

place. Comments from all individuals in the focus groups were encouraged. Finally, a 

pre-test of the survey instnmient was conducted using 400 Iowa households. Details of 

the pre-test are described below. The final survey design benefited at each of ±ese test 

phases and includes five sections. 

The first section is the introduction of the survey, providing a definition and 

description of wetlands. In this section respondents are asked to report wetland visitation 

frequency by region and to indicate what types of activities they participated in at the 

wetland sites. Households were also posed with a contingent behavior question that 

asked how they would change their visitation patterns under a hypothetical increase in 

visitation costs. In the second section, we ask the individuals to identify the benefits and 

costs they associate with wetlands as well as indicate the importance of various 

characteristics when choosing to visit wetlands. We also ask them to characterize the 

current state of wetlands in Iowa as well as recent trends. The fourth section is the heart 

of the wetland survey from the point of view of this chapter. Here we describe a program 

designed to augment Iowa's prairie pothole wetlands aimually over the next 15 years. 

Then we pose a CV question asking for their willingness to contribute to such a program. 

The text of the CV question is; 

One objective of this survey is to determine how vahiable the Prairie Pothole 
Wetland Restoration Project is to lowans. In the next question, we will be asking 
you about how much you would be willing to contribute to such a project. While 
you will not actually be contributing to the program at this time, we would like 
you to respond as if you were pledging to contribute to the project. In particular. 
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please keep in mind any limits your budget would place on such contributions, as 
well as what you would have to give up to contribute. 

16. Would you be willing to contribute an additional $B on a one time basis 
(payable in annual installments of $B/5 over five years) to an Iowa Prairie 
Pothole Management trust ilmd? This fund would be used to acquire about 
2,500 acres of land annually for the next 15 years fi-om willing landowners 
that would then be restored to prairie potholes. 

B represents the bid amount of the dichotomous choice CV question and was varied 

across survey instruments according to the bid design described below. The fifth and 

final section of the survey collects socio-demographic data fi'om the individual, which we 

use as explanatory variables in the analysis presented below. 

Sample Design card Selection 

The survey was administered to 4,000 Iowa households in early 1998. Of these, 1,600 

went to individuals who had purchased a Hunting or Fishing License in Iowa during 

1996. The remaining 2,400 of the surveys went to residents of Iowa selected randomly 

fi-om the general population.'* The 2,400 households fi-om the general population were 

selected randomly from phone directories in Iowa by Survey Sampling, Inc. Selection of 

the 1,600 individuals fi'om the hunting or fishing license holders was more difiicult. This 

is because the Ucense holder data is not computerized. Instead, a copy fi'om each license 

sold is kept on file in an Iowa Department of Natural Resources warehouse in Des 

Moines, Iowa. The licenses are filed by the county of purchase. To ensure that our 

selection technique generated a random sample, we needed an algorithm for selecting 

individuals from the files. 

" This «awnpifng teduiiqae effectively forms a stratification of Iowa residents. The goal of the stratification 
was to ensore that wetland users were well repxesented in the sanyle. We {Hcsent a statistics! mediod to 
explore the consequences of this stratification on our sample esrimatfis in a later sectiorL 
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To ensure regional representation, we divided the state of Iowa into ten regions (we 

made these divisions by crop reporting districts). The weight placed on each crop 

reporting district was the regions proportion of total licenses sold. Within each crop 

reporting district, the weight placed on a county was the county's proportion of licenses 

sold in the crop reporting district. The county weights within a crop reporting district 

sum to one by definition. 

With these weights, we randomly selected an individual by first randomly drawing a 

crop reporting district. Next, we selected a county randomly. Once the comity was 

selected, we pulled the warehouse box containing a copy of all licenses sold in that 

county. The licenses sold to Iowa residents were then stacked and the height measured. 

Drawing a random number fi-om the uniform distribution identified a license fi'om the 

stack. This algorithm was then be repeated 1,600 times to construct a random sample 

fi'om the population of license holders. 

Bid Design 

The dichotomous choice CV question in section four of the survey asks the respondem 

if they are willing to pay a specific dollar amount B in support of the Prairie Pothole 

Restoration Project in Iowa. As Cameron [8] has noted, it is the variation of B across the 

individual surveys that allows the analyst to identify both the parameters of the 

underlying bid function and the dispersion parameter, cr. The task of selecting both the 

bid levels and their distribution among the survey sample is one of optimal bid design. By 

varying the niunber and dispersion of bids across the surveys, one can aher the precision 
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with which individual parameters of the model are estimated and, hence, the precision 

with which the bid fimction itself is estimated. 

There exists a substantial literature on optimal bid design, both in the general discrete 

choice setting (Abdelbasit and Plackett [1], and Nfinkin [45]) and as it applies to CV 

analysis (Kanninen [35], [36] and Cooper [13]). The standard bid design approach selects 

the bids so as to maximize the Fisher information matrix (D-optimality) or to minimize 

the variance of some function of the parameters (C-optimality), such as the bid function. 

The problem with these classical approaches, however, is that they require knowledge of 

the parameter that one is trying to estimate in order to construct the optimal design. 

Typically, researchers will use their prior beliefs in order to construct the optimal design. 

This suggests a Bayesian framework might be appropriate (e.g., Chaloner and Lamtz 

[10]), using prior information from focus groups and pre-tests in developing an optimal 

bid design. While such an eflfort is beyond the scope of the current paper, we have 

employed a pseudo-Bayesian approach to the bid design in the wetlands survey. In 

particular, the following four step-procedure was used in the bid design. 

Step 1: Pre-test. During the pre-test phase, a wide variety of annual bid values 

were employed, ranging from $5 to $250. This was done so as to ensure that we 

covered the likely range of underlying bid values in the population. A total of 228 

useable responses were obtained (for roughly a 57% response rate). 

Step 2- Initial Fjtfimates of the Mean WTP. Using the survey responses from the 

pre-test, a simple log-probit model was estimated, including only an intercept 

term ( a = 2.43, with a standard error of 0.88) and a dispersion coefficient 
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(<T=2.81, with a standard error of 1.06). The estimated median value for the bid 

function is then 11.36 per year. 

Step 3: A Pseudo-Bavesian Design. While we could have applied classical bid 

design techniques at this stage, using the point estimates from the log-probit 

model, we chose instead to employ a pseudo-Bayesian approach. In particular, 

• Using the asymptotic normal distribution of the pre-test parameters, T 

parameter simulations were drawn, yielding parameter pairs of (a„cr,), 

t=l...T. 

• For each simulated parameter pair, a sample of N simulated households was 

const ructed,  wi th  impl ied WTP levels  ofW^,i=\ . . .N.  

• For each simulated sample, the pseudo-households were randomly assigned a 

bid for each of s trial bid design, 5=1.. .S.^ The household's implied 

response to these bids yielded ^bid-response pairs for each trial bid design; 

i.e., , where D^ = l '\£W^>b^;= 0. 

• Finally, using the ^bid-response pairs, a mean WTP (W^) and its estimated 

standard deviation (a-^) can be constructed for each bid design (s=1.. .5) and 

each simulated pair of parameters (<=1... 7). The selected final survey design 

 ̂ A bid design corre^nds to Hfigignmg the number of bid levels to be used, the bid levels themselves, and 
the proportion of the sanyle assigned to each bid leveL In order to limit the possible nmnber of bid d^gns, 
we required that (a) bid levels be in increments of five dollars, (b) at most six bid level be used, and (c) the 
sample be allocat̂  in 5 percent blocks. 
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• minimized the mean value of a-^ across the parameter simulations; i.e., we 

r 
chose s' = ArgMin o-„ . 

' t=rl 

Table 3.1 provides the final bid design. It is worth noting that the resulting mean 

value of a-^ was 1.86 for the optimal bid design, compared to 16.83 when we 

used the D-optimal design suggested by Kanninen [36], 

Table 3.1: Final Bid Design 

Bid level (B) Proportion of 
Sample 

25 50 

50 5 

75 5 

100 15 

250 15 

500 10 

Survey Implementation 

A pre-test sample of400 was selected from the population. After amending the 

survey to accommodate the concerns from the focus group sessions, we printed surveys 

for the pre-test sample. The pre-test surveys were mailed by the middle of November, 

1997. We received 174 completed surveys from the pre-test and 39 surveys were 

undeliverable (48% response rate). For conq)leting the pre-test survey, respondents were 
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promised $4.00. Finally, after receiving the pre-test survey results, we made minor 

changes to the survey before sending them out to our full sample in early 1998. 

In an effort to maximize the response rate to the survey, surveys were administered 

according to Dillman's [19] methods. A postcard was mailed out to the households who 

failed to respond to the survey after two weeks. If the individual failed to respond in the 

next two weeks, a duplicate survey was mailed with another reminder. As a final 

incentive to reduce non-responses, the households were promised $10.00 for completion 

of the survey. 

We received 2,026 surveys out of 3,557 that were deliverable. This implies that the 

response rate was approximately 57%. Of the 1,600 directed to individuals who had 

purchased a hunting or fishing license in 1996, 1,330 were deliverable and 776 were 

completed. Of the 2,400 directed to the general population, 2,227 were deliverable and 

1,250 were completed. Given the length of the survey, this response rate is reasonably 

reflective of all Iowa households' attitudes towards wetlands. A breakdown of the 

sample appears in Table 3.2 below. 

Table 3.2: Sample breakdown by strata 

Hunters and 
Fishers 

General 
Population 

Total 

Initial Sample 1,600 2,400 4,000 

Deliverable 1,330 2,227 3,557 

Responses 776 1,250 2,026 

Response Rates 58.3% 56.1% 57.0% 
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The Model 

The explanatory variables come firom the socio-demographic variables obtained from 

the last section of the survey. The variables included are: age; sex; education; ownership 

of a fishing license; and ownership of a duck stamp. Each of these variables takes on a 

discrete value. We have three classifications for age (which implies two dummy 

variables). The classifications were young age (less than 34), prime age (between 35 and 

59), and golden age (greater than 59). Education was classified into two groups. The 

groups were individuals with some college experience versus those without any college. 

Summary data for these variables appear in Table 3.3. One of the first points of interest 

is the representation of fishing license holders in the sample. Clearly, license holder's are 

over represented in the sample. As mentioned previously, 40% of all surveys were 

directed to individuals who had purchased a hunting or fishing license in Iowa during 

1996. Effectively, we can think of Iowa as consisting of individuals from two strata 

(license holders and non-license holders). However, if we believe the effect of holding a 

license in 1996 can be captured by a discrete variable and we include this variable as an 

explanatory variable in our model of the bid fimction, it is reasonable to expect that no 

fiirther modeling is required (Lerman and Manski, [41]). That is, we may write: 

f(no.  ,z, 1^) = P[no, )/(z,) (3.26) 

where z, is a dummy variable that indicates strata. Note that the probability of an 

observation being drawn from a particular stratum is unaffected by the model parameters. 

As equation (3.26) indicates, incorporating the stratification into the likelihood statement 

is insignificant as the term is a constant and has no impact on the maximization process. 
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Incoq)oratmg equation (3.26) into a general expression for our maximum likelihood 

statement gives us: 

= A^2rin(p(«o,|Az,) + ln(/(r,)))l. (3.27) 
" 1=1 " i=l -I 

As long as we include the stratification as conditionally influencing the probability of the 

discrete response, no further weighting is required. 

The coefficient for each remaining explanatory variable is assumed to be constant 

across strata. Thus, we may apply the estimators discussed above to the dataset, where 

the variables are defined as follows; 

xii = 1 if the individual falls into the young age cat^ory; and 0 otherwise 
X2i = 1 if the individual falls into the golden age category; and 0 otherwise 

X3i= 1 if the individual falls into the female category; and 0 otherwise 
X4i=\ if the individual falls into the some college category; and 0 otherwise 

xsi = 1 if the individual falls into the fishing license owner cat^ory; and 0 otherwise 
X6i = 1 if the individual falls into the duck stamp owner category; and 0 otherwise. 

(3.28) 

Each variable is then mean differenced, with x,, = x^, - x,.. The values of the mean 

differenced variables are reported in Table 3.4. Note that the mean for each variable is 

simply the negative of the value reported in the "If felse" column in Table 3.4. This is 

because the discrete variable takes on a zero when the variable is &lse. Thus, the mean-

differenced value is simply the negative of the mean. 



www.manaraa.com

55 

Table 3^: Data Summary 

Variable Percent in Sample 

Young Age 20.9 

Prime Age 56.2 

Golden Age 22.9 

Female 24.2 

Some College 42.3 

Fishing License Holder 67.8 

Duck Stomp Holder 15.1 

Table 3.4: Mean-differenced data summary 

Variable If true If false 

Young Age 0.791 -0.209 

Golden Age 0.771 -0.229 

Female 0.758 -0.242 

Some College 0.577 -0.423 

Fishing License 0.322 -0.678 

Duck Stamp 0.849 -0.151 
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Estimatioii Results 

The coefficient estimates that result from applying each of the estimation techniques 

to the Iowa wetlands dataset are provided in Tables 3.5-3.8. Coefficients that are 

estimated to be significantly different from zero at the 5% level and 1% level are 

indicated by the * and **, respectively. The estimation techniques consistently identify 

the coefficient on golden age, female, some college and duck stamp ownership variables 

to be significant. The exception is that the SNP model did not find the golden age 

variable to be statistically different from zero at any reasonable level of significance. The 

signs indicate that individuals characterized by being either in the golden age or female 

category had smaller bid amounts for the restoration program. Further, individuals that 

had some college or owned a duck stamp were willing to contribute more to the 

restoration program. The models that included a coefficient on the bid amount and an 

intercept term found (all but the SNP model) the estimated coefficients to be significantly 

different from zero. 

Tables 3.9 and 3.10 present the marginal dollar effects on the bid fimction of various 

household characteristic. As the variables were mean differenced, the intercept term is 

also the mean WTP value for the sample. To obtain the estimated value for a prime age 

male with no college who owns both a fishing license and a duck stamp, one need only 

sum the corresponding cells of Table 3.9 by characteristic and the mean value for the 

sample. That is, 

fV = 6.09 + 3.38 + 326 - 8.86 + 2.12 + 21.83 = $27.82. (3.29) 
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Table 3.5: Probit Model results 

Variable Coefficient t-stat 

Bid Amount 
0.0172 13.61*» 

Intercept 0.1050 2.11** 

Young Age -0.0470 -0.62 

Golden Age -0.2121 -2.69** 

Female -0.2318 -3.21 •• 

Some College 0.3606 5.83»» 

Fishing License 0.1183 1.81* 

Duck Stamp 0.4432 5.09** 

Table 3.6: Generalized Maximum Entropy Model results 

Variables Coefficient t-stat 

Bid Amount 0.0303 12.10** 

Intercept 0.1980 3.01»» 

Young Age -0.0862 -0.72 

Golden Age -0.3472 -2.65** 

Female -0.3655 -2.92** 

Some College 0.5862 5.81»* 

Fishing License 0.1896 1.52 

Duck Stamp 0.7284 4.71»» 
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Table 3.7: Log-probit Model results 

Variables Coefficient t-stat 

Bid Amount 0.4617 15.32»* 

Intercept 0.8713 I1.21»* 

Young Age -0.0462 -0.50 

Golden Age -0.2229 -2.74** 

Female -0.2303 -3.12** 

Some College 0.3704 5.92** 

Fishing License 0.1120 1.64 

Duck Stamp 0.4508 5.26»* 

Table 3.8: Semi-Nonparametric Model Results 

Variables Coefficient t-stat 

Young Age 0.0348 0.28 

Golden Age -0.3334 -1.37 

Female -0.6264 -3.45** 

Some College 0.8763 5.71** 

Fishing License 0.3361 2.04*» 

Duck Stamp 0.9264 3.98** 

yo 0.5445 12.58** 

Yi 0.2380 13.50** 

Y2 0.0027 -3.21** 
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Table 3.9 demonstrates that the results for the GME model are similar to the probit 

model. This result stems from the relationship between the entropy formulation of the 

problem and the logit framework^. As the logit model generates results close to probit, so 

does the GME model. 

Table 3.10 compares the SNP model to the log-probit. The effects by classification of 

the explanatory variables are given in percent terms. Thus, to derive an estimate of an 

individual's WTP for the restoration program who is a prime age male with no coU^e 

and owns both a fishing license and a duck stamp, we compute: 

W = $8.43(1+.1403X1+.1285X1-2881X1+-0814X1 +12906) = $19.13 (3.30) 

A similar calculation would be performed for the SNP model. 

Table 3.11 compares the estimated results for a series of stylized individuals. We 

consider stylized individuals rather than covering the complete space of possible 

characteristic combinations as there are 48 possible combinations. The stylized 

individuals are: 

• a prime age male with some college who is an outdoor enthusiast; 
• a prime age male with some college who is a fishing enthusiast; 
• a prime age female with some collie who is an outdoor enthusiast; 
• a prime age female with some college who is a non-enthusiast; 
• a golden age female with no college who is a non-enthusiast; and 
• a young male with no college who is a non-enthusiast. 

 ̂This feature of the GME model is discussed in ch^Jter IL 



www.manaraa.com

60 

Table 3.9: Probtt and GME Model Results in Dollars 

Characteristic Probit GME 

Mean WTP for 
the sample $6.09 $6.53 

Young Age -$2.38 -$2.48 

Prime Age $3.38 $3.21 

Golden Age -$8.92 -$8.24 

Female -$10.19 -$9.13 

Male $3.26 $2.92 

Some College $12.06 $11.14 

No College -$8.86 -$8.19 

Fishing License $2.12 $2.01 

No Fishing 
License -$4.65 -$4.24 

Duck Stamp $21.83 $20.39 

No Ehtck Stamp -$3.88 -$3.63 
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Table 3.10: Log-probit and SNP Model Results 

Characteristic Log-Probit SNP 

Mean WTP for 
the sample $8.43 $15.75 

Young Age -26.48% -18.21% 

Prime Age 14.03% 7.13% 

Golden Age -29.64% -23.23% 

Female -31.47% -37.79% 

Male 12.85% 16.40% 

Some College 58.81% 65.73% 

No College -28.81% -31.00% 

Fishing License 8.14% 11.44% 

No Fishing 
License -15.16% -20.37% 

Duck Stamp 129.06% 117.57% 

No Duck Stamp -13.71% -13.06% 
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Table 3.11: Stylized individual results in DoUars 

Stylized Characteristics Probit Log-probit SNP GME 

Prime age male with some 
college and cm outdoor 

enthusiast 
$48.74 $42.67 $78.92 $46.20 

Prime age male with some 
college and a fishing 

enthusiast 
$23.03 $16.08 $31.54 $22.18 

Prime age female with 
some college and an 
outdoor enthusiast 

$35.29 $25.91 $42.18 $34.15 

Prime age female with 
some college who is a non-

enthusiast 
$2.81 $7.66 $12.04 $3.88 

Golden age female with no 
college and a non-

enthusiast 
-$30.41 $2.12 $3.59 -$26.90 

Young male with no 
college and is a non-

enthusiast 
-$10.42 $3.65 $7.16 -$9.09 
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For this analysis, we define an outdoor enthusiast to be an individual that possesses both 

a fishing license and a duck stamp. An individual classified as a non-enthusiast has 

neither a fishing license nor a duck stamp. A fishing enthusiast would hold only a fishing 

license while a waterfowl enthusiast would hold only a duck stamp. these 

definitions in mind, we can compare the results across models. For the prime age 

stylized individuals, the model estimates are quite similar with the possible exception 

being the SNP model, which tends to estimate a high value for WTP for the restoration 

program (nearly double the values fi"om the other methods). The table also illustrates 

why the log-probit model is a favorite among researchers with applied datasets as it does 

not produce any negative WTP for a good by construction for any individual in the 

population. However, if we are interested strictly in an estimate of mean WTP, the probit 

model is likely to be a more reliable estimator.^ 

To accomplish our goal, we need to airive at an estimate of mean WTP for the 

restoration program for all Iowa households. As briefly mentioned above, the 

stratification issue is critical in this analysis. That is, our survey was sent out to two 

different strata in the Iowa population. The first strata consists of households who held a 

hunting or fishing license in Iowa during the last three years. We will denote the number 

of individuals in Iowa in this strata as N/ and n/ will represent the number of individuals 

fi'om this strata in our sample. The second strata consists of households who held neither 

a hunting license nor a fishing license during the past three years. We will denote the 

number of these individuals in the Iowa population as JVj while /12 represents the number 

 ̂This assertion is due to the Monte Carlo results presented in ch^)ter n of this dissertation. 
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of individuals from this strata in our sample. Note that Ni+N2= N, where N is the total 

number of Iowa households. Thus, 

N N 
w. = —- and w. = —^ (3.31) 

' N  ̂ N 

represents the proportions of Iowa households from strata 1 and strata 2, respectively. 

Notice that for our sample, 

Wj <——— and M/, >———. (3.32) 
+«, " +/I2 

This implies that the nimiber of individuals who are not outdoor enthusiasts are 

underrepresented in the sample. Thus, the mean from the sample is biased towards the 

value that enthusiast households place on wetlands. In order to get an unbiased estimate 

of the population mean WTP for the restoration program, we need to weight the 

observations by strata (Cochran, [12]). That is, note the following: 

W, ,=i VV, 

and (3.33) 

"2 1=1 ^2 1=1 

Further, we can write: 

2 at. •I 2 "J 

/=1 /=! 

1 1 M TT I It rr 
= —yw,,+—Yw^=^ X —  + —  X —  xr^ \T^ ^ XT ^  XT I f j  XT 

f^wA N. 

"  N t i "  N  

f N, 

N 
WL. 

= Wi^.+^2^2. (3.34) 

Given equation (3.33), then 
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+ WJV2. (3.35) 

In order to get an unbiased estimate of the population mean, we multiply the mean WTP 

estimate of license holders by the proportion of license holders in the Iowa population. 

According to the 1990 Census, there were 1,064,325 Iowa households. Also, 57% of the 

responses from the surveys sent to the general population indicated that someone in the 

household had purchased a hunting or fishing license in the last three years. We used this 

fraction as the proportion of Iowa households with at least one member of the household 

owning a hunting or fishing license (thus, we estimate the number of hunting or fishing 

license holding households to be 606,665). Similarly for non-license holders, we 

multiply the mean WTP estimate of non-license holders by the proportion of non-license 

holders in the Iowa population (457,660 Iowa households are estimated to be non-license 

holders or 43% of all Iowa households). The estimate of the population mean is the sum 

of these two weighted stratum means. The mean WTP according to the probit model for 

license holders in the sample is $9.72 while the mean WTP for non-license holders is -

$3.94. 

After making the weighting adjustment described above and applying it to the Iowa 

wetlands sample, we get the estimates for the mean value of Iowa households WTP for 

the restoration program. These results are presented in Table 3.12 by models. Tables 3.9 

and 3.10 above reported the mean WTP of the sample for each estimator. Consistent 

with intuition, the estimated population mean is below the sample mean for each 

estimation technique. This is the result we expected as the license holders were over 

represented in the sample. Moreover, the estimation results suggest individuals with a 
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hunting or fishing license had a higher value for wetlands. Thus, the estimated 

population mean is less than the estimated sample mean. In general, the probit, log-

probit and GME yield similar values for prairie pothole restoration while the SNP values 

are nearly three times the probit results. 

Table 3.12: Population mean values by model 

Models Population mean Per Acre Value 

Probit $3.85 $109.27 

Log-probit $7.75 $219.96 

GME $7.53 $213.72 

SNP $14.33 $406.71 

Investigating the Effects of Stratification 

As noted in the sample selection section above, a stratified sampling scheme was used 

in the survey implementation. In this section, we investigate the effects of that 

stratification on the welfare estimates. 

Data stratification may, in general, cause sample estimates to be biased estimators of 

the population parameters. This can be illustrated as follows. There exists a population 

likelihood function that can be expressed as follows: 

(3.36) 
»=i 1=1 

This allows us to express the log-likelihood fimction as; 
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V, 
In L = 2; In P,. + (1 - no,,) In(l - P,,)} + ̂  {no^, In /^ + (l - no^) In(l - )} 

1=1 
f  t f i  

= N, 
Z Hi. + (1 - - -Pii)} 

1=1 

+ N. 

f Af, 
Z {"®2< ^ ̂2. + (1 - ) In(l - )} 
1=1 

N. 

= AT,^, +N^A^, 
where 

Z Hyi + (1 - /lO^ ) In(l - /V )} 

N. 
for j - 1,2. (3.3 

Similarly, the likelihood function for the sample can be expressed as; 

L=f{PT- (1 (1 -
1=1 1=1 

This allows us to ^ress the log-likelihood function as: 

In Z = Z [no  ̂In P,, + (1 - /io„) ln(l - Pj} + Z {"«2i ^ A, + (l" ) ln(l" A,)} 

(3.3 

1=1 

= «, 

1=1 
^ / 

Z[no^ In4 + (1 -)ln(l - P„)} 
i=I  + /I2 

Z {wj, In + (1 - no,,) ln(l - P^,)} 
i= l  

(3.3 

The properties of the maximum likelihood estimator give us: 

Z{«o^lnP^ +(l-/K?^)ln(l-P,,)} 
1=1 

w. 
•^Ar (3.4 

If we make use of this &ct with our sample log-likelihood fimction, we have: 

lnZ->n,i4, +W2-4j ^-^1-^1 +•^2-^ =InZ. (3.4 
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For all cases where ni<Ni and ni<N2, we see that In L will not converge to In Z,. 

To correct for this, we can think of using the following weighted log-likelihood 

function. 

;=1 ** «=1 

2 {no,̂  In Pj, + (1 - nOj,) ln(l - )} 
1=1 = Ar, 
^ {/io„ InPy + (1 - no^ )hi(l - />«)} 

«=i 

=lnL. 
(3.42) 

By the properties of our maximum likelihood techniques, the weighted sample log-

likelihood converges to the population log-likelihood. Thus, the weighting scheme gives 

us the desirable convergence property. 

The weighting scheme implies the sample likelihood has the form; 

1=1 «=i 

If the sample was conducted proportionally to the population (i.e., w, = ———), then 
n, +/I2 

N N 
—^ = —-. This implies the weighting method is inconsequential. That is, maximizing 

the straightforward sample likelihood flmction is equivalent to maximizing the weighted 

maximum likelihood function as the weights drop out. 

For the wetlands survey we analyzed in this chapter, w, * ———. Thus, the 
"l +«2 

optimization of the simple sample likelihood could potentially lead to biased estimates if 
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our concern is making inferences on the population. However, as we constructed the 

WTP function, the estimated probability of a "no" response is a fimction of the 

individual's strata. Thus, as Lennan and Manski [41] point-out, the weighting scheme 

will not be a &ctor. 

To demonstrate this result, we maximize the weighted likelihood problem for the 

probit model with the wetlands dataset according to equation (3.42). The results are 

presented in Table3.13. Upon inspection of Table 3.13, we see a high degree of 

congruence between the two methodologies. That is, the parameters are of similar 

magnitude and in all cases they are of the same sign. The estimated model parameters for 

the weighted probit model are presented in Table 3.14. Comparing Table 3.14 to Table 

3 .5 (the probit model results), we see that the t-statistics give us the same conclusions in 

regards to significance of variables. In fact, the t-statistics are also close in magnitude. 

This suggests that the weighting scheme is not necessary as the estimated parameters are 

invariant. 

Conclusions 

The estimates presented in Table 3.12 are largely consistent across model 

parameterizations with the lone exception being the SNP estimator, which estimates a 

much larger value than the other models. This result is not surprising given the work 

presented in chapter n of this dissertation. In fact, taking Chapter II as the guide, the 

results from the probit and GME estimation techniques are likely to be our best guess as 

to the true mean value for the Iowa population. 
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The average aggregate amount that Iowa households are willing to commit to wetland 

restorations that take place in the next 15 years is $109.27 per acre. When individuals 

responded to the C V question in our analysis, they were aware of the benefits and costs 

associated with wetlands. This includes the gain in flood control, water quality 

improvement, and wildlife habitat. The value we estimated then reflects both use and 

nonuse values for wetlands. Given the current land prices in Iowa, it is doubtfiil the value 

reported here could buy land already in a wetland state from private individuals for the 

purpose of maintaining the wetland indefinitely. Again, this value is based upon the 

estimated average per Iowa household. 

It is interesting to note that individuals with the highest use values, such as outdoor, 

fishing and waterfowl enthusiasts, account for a high percent of the total value for the 

population. The values these enthusiasts place on wetlands are reported in Table 3.15. If 

we consider the aggregate value that Iowa's enthusiast households place on the 

restoration program, we get $157.25 per acre or 144% of the total value of the Iowa 

population. While these values ignore the discounting that is necessary due to spreading 

the payments out over 5 years, we see that these households have much larger value for 

wetland restoration efforts. Given that establishing these collaboratives are costly for 

private individuals, perhaps the role for policymakers is to shift this burden from the 

private individuals to government agencies. That is, government resources could be 

allocated for the purpose of developing wetland management plans. This stops short of 

suggesting public funds be spent for acquiring wetlands. In fact, this analysis suggests 

that this should not be done based on average Iowa household's valuation of wetlands. 
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Table 3.13: Weighted Probit comparison to Probit 

Characteristic Probit 
Weighted 

Probit 
Mean WTP for 

the sample 6.09 6.04 

Young Age -2.38 -2.23 

Prime Age 3.38 3.63 

Golden Age -8.92 -9.92 

Female -10.19 -11.03 

Male 3.26 3.53 

Some College 12.06 11.95 

No College -8.86 -8.78 

Fishing License 2.12 2.28 

No Fishing 
License -4.65 -4.80 

Duck Stamp 21 83 21.35 

No Duck Stamp -3.88 -3.80 
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Table 3.14: Weighted probit model results 

Variable Coefficient t-stat 

Bid Amount 
0.0175 13.29** 

Intercept 0.1055 2.60** 

Young Age -0.0442 -0.47 

Golden Age -0.2367 -2.90** 

Female -0.2544 -3.59** 

Some College 0.3620 5.66** 

Fishing License 0.1238 1.87* 

Duck Stamp 0.4392 4.39** 

Table 3.15: Enthusiast's mean values by model 

Models Enthusiast's mean Per Acre Value 

Probit $9.72 $157.25 

Log-probit $9.54 $154.34 

GME $9.82 $158.87 

SNP $18.03 $291.68 
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CHAPTER IV 

NONPARAMETRIC BOUNDS ON WELFARE MEASURES FOR NONMARKET 
GOODS 

Introduction 

In a series of influential papers, Varian ([56], [60]) extended and refined the work 

of Afriat [4],[5], Samuelson [52], Houthakker [31], and Richter [50], among others, to 

form the basis for a series of empirically testable hypotheses known generally as the 

theory of revealed preference. This work demonstrates how observed demand behavior 

can be used to recover information about an individual's preference ordering without 

resorting to parametric assumptions regarding the form of the consumer's underlying 

demand or utility function. Revealed preference theory has been influential in developing 

empirical tests of utility theory (Varian [57],[58]), investigating issues of changes in 

consumer's tastes (Chalfant and Alston [9]), testing whether firms behave as profit 

maximizers (Varian [59]), etc. The general fi-amework has also been extended to account 

for stochastic elements (Varian [60]), Sakong and Hayes [51]). The ability to characterize 

information about consumer's preferences without imposing a specific flmctional form 

for utility or demand is intuitively appealing and has provided a rich base for empirical 

research in consumer and firm theory. 

The issue of parametric specification has been of widespread concern in 

nonmarket valuation. Most nonmarket valuation methods require the analyst to specify a 

particular functional form for an estimating equation. It may be a demand, bid, or utility 

function (or hedonic price fimction). Although the analyst may perform goodness of fit 
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tests or use other tools to choose among functiomil forms, there remains a great deal of 

arbitrariness and researcher judgment in the choice of fimctional form. 

In the travel cost model, it has long been understood that the choice of functional 

form for either the demand function or the indirect utility function can have significant 

consequences for the magnitude of the resulting welfare estimates (Ziemer, Musser, and 

Hill [62], Kling [37], Ozuna [48]). The same has been foimd in random utility models of 

recreation demand with respect to the choice of functional form and the assumed error 

structure (Morey, Rowe, and Watson [46], iGing and Thomson [38], Heiiiges and Kling 

[29]). Hedonic housing models used to value air quality are subject to similar concerns 

(Cropper, Deck, and McConnell [18]). Finally, the contingent valuation literature has 

found that changes in either the eiror structure or the assumed bid function's form can 

yield large differences in valuation estimates from discrete choice formats (Hanemann 

[28]). 

Given the empirically observed sensitivity of welfare estimates to fimctional 

form, it is natural to consider whether nonparametric methods such as those refined and 

developed by Varian might be of value in nonmailcet welfere analysis. In this research, 

we first adopt Varian's [56] work on bounding welfare measures to the task of valuing 

nonmaiicet conmiodities. Next, we demonstrate how the bounds can be narrowed with 

appropriate data on optimal market bundles at new prices. The exciting aspect of this 

work is that these bounds are derived using only quantity and prices of visits to a 

recreation area without resorting to any parametric assumption on demand or utility. 

To accomplish this objective, we first demonstrate how bounds on compensating 

variation for a price change can be constructed when the analyst has a single data point 
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(one price/quantity combination) for each individual in the sample. Next, we show how 

the addition of a second such point can narrow these bounds. Finally we show how these 

bounds can be fiirther tightened with the addition of a third and more observations for 

each individual. To derive these bounds, we make use of the relationship between 

compensating variation and equivalent variation. 

The nonparametric bounds thus developed will only prove useful if they are fairly 

tight. To investigate their potential empirical value, we conduct a Monte Carlo 

experiment. In this experiment, the nonparametric lower and upper bounds are compared 

to computed "true" values of WTP using simulated data sets. Additionally, a natural 

comparison is to consider how well the bounds perform in estimating welfare relative to 

traditional parametric approaches. To consider this, traditional travel cost type models 

are estimated on the simulated data sets and point estimates and confidence intervals are 

constructed from these models which are then compared to the nonparametric boimds. 

In the recreation demand literature, Adamowicz, Fletcha*, and Graham-Tomasi, 

[2] and Larson et al [40] have used Varian's methodology to test for consistency between 

contingent valuation (stated preference) models and recreation demand (revealed 

preference) models. The approach we develop differs significantly from these previous 

applications; here, we take the methodology iiirther by developing bounds on welfare 

measures for notmiarket goods. 

A caveat on the nonparametric bounds described below is that, because they use 

the theoretical relationship between compensating and equivalent variation, and because 

this relationship itself reverses depending on if the good is a normal or inferior good, the 

methodology applies only for a normal good. Thus, an analyst using these bounds m ust 
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be sure that the good is not inferior. We comment further on this issue in the theoretical 

section of the paper. 

Using Observed Data to Compute Bounds on the WTP for Price Changes 

Bounds Based on One Data Point for Each Individual 

The following development of the bounds with a single data point draw heavily on 

Varian's [56] seminal work. To begin the discussion of welfare bounds, consider a 

simple budget constraint for an individual choosing between recreation visits (v) and a 

composite commodity (z). In Figure 4.1, X, = (y^^Zo) denotes the chosen conunodity 

bundle at the initial price vector (denoted Po in the figure) and M is the consumer's 

income. Let X = {(v,z):v,z is the set of all possible bundles. 

In order to calculate the exact compensating variation (CV) associated with a 

particular price change, we would need to determine the amount of money the individual 

is willing to give up to receive the price change. Formally, 

CV = e{P„U,)-eiP^,U,) 
= M-eiP^,UoX 

where e{P,U) denotes the individual's «q)enditure function, u^=u{y^,z^) denotes the 

level of utility at , and P^ and are the prices before and after the price change. 

The first term is exactly the initial income of the consumer (M). If we can 

provide bounds on the second tenn, , J/q ), we can also bound CV. Thus, we seek to 

compute lower and upper bounds on the expenditure that would be necessary for the 

consumer after the price change to obtain the original utility level. 
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v 

Figure 4.1: Expenditure Bounds 
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We now ask the question: What is the most amount of income we can take away from 

or give to this individual aiter a price change to be sure that he or she can attain the 

original level of utility? Suppose, as depicted in Figure 4.1, we are interested in the CV 

for a price decrease from Po to where Po represents the budget constraint at the initial 

prices and represents the new budget constraint. 

We know the individual can at least attain his initial level of utility if he can 

afford his initial bundle. Thus, that amount of ®q)enditure is the most he would ever need 

after the price change. In Figure 4.1, this upper-bound on expenditure is; 

M^=P^^Xo. (4.2) 

Graphically, can be identified as the vertical intercept of a straight line parallel to 

Py that intersects Xo (the dashed line through Xo in Figure 4.1). Ifthe consumer views v 

and z as perfect complemetrts, is exactly equal to the ©cpenditure necessary to 

attain the original level of utility at the new prices. However, if there is at least some 

substitution possible between v and z, the consumer could attain his initial utility level 

with less income than P^jX^, thus represents an upper bound on necessary 

expenditure. 

Following this logic, the least expenditure that could possibly be required to keep 

the consumer at the original level of utility after the price change would occur if the 

goods were perfect substitutes (i.e., straight line indifference curves). In this case, income 

can be taken away from or given to the consumer until he would pick the comer solution 

that minimizes eqpenditures. Graphically, the lower boimd on expenditure can be 
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identified by drawing a straight line parallel to P^f that intersects the vertical intercept of 

Po, denoted in Figure 4.1. 

Combining the upper and lower bounds on expenditure, we get bounds on CV: 

The superscript in the LHS and the expenditure boimds reflects the fact that these bounds 

are constructed knowing only a single data point (the original commodity bundle) Thus, 

the compensating variation for a price change can be bounded by the original expenditure 

minus and . Note that the lower bound on expenditures determines the upper 

boimd on CV and vice versa. 

The proximity of CV to the boimds depends upon the degree of substitutability 

between the goods. If the goods are perfect substitutes, CV will exactly equal the upper 

bound. Conversely, if the goods are perfect complements, CV is exactly the lower bound. 

Although it is clear that this procedure can be used to compute bounds on 

individual CV, such bounds will only be of interest if they are feirly narrow. 

Unfortunately, the bounds identified in equation (4.3) are unlikely to be tight. The next 

section describes how the addition of a second data point (price/quantity observation) can 

narrow these boimds. 

Bounds Based on Two Data Points for Each Individual 

In this section, we demonstrate how the bounds based on Varian's General Axiom of 

Revealed Preference can be improved by appealing to the properties of Hicksian welfare 

measures. Now suppose that in addition to knowing the optimal bundle chosen by the 

consumer at the original prices, the analyst also knows the optimal bundle chosen by the 

(4.3) 
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individual at the new prices. A second price/quantity vector might be obtained for an 

actual sample in at least two diSerent ways. First, analysts might collect data on use over 

two seasons or time periods. In this case, the analyst would have two consumption 

bundles at two sets of prices based on revealed preference data. Alternatively, contingent 

behavior (stated preference) data could be combined with the revealed preference data to 

generate the second data point. In fact, a series of price/quantity combinations could be 

collected in a survey where respondents are asked how many visits they would take under 

a range of different prices of access to the good. 

Regardless of the source of this second data point, the question of interest is: does 

the addition of this information help us tighten the bounds on CV for a price change from 

Pq to ? The answer is yes, but the link is indirect and requires us to consider the 

equivalent variation (EV) for the price decrease. In particular, suppose that the consumer 

reveals to the researcher that Xn is (or would be) his chosen commodity bundle at prices 

Pff. This information allows us to compute bounds on the EV for the price change from 

Po to Pif. By appealing to the feet that the equivalent variation for a price decrease is 

greater than or equal to the compensating variation for the same price decrease, we can 

potentially tighten the upper bound on CV by using the upper bound on EV in its place. 

Equivalent variation for the price decrease is defined as 

Ey = e{P,,U^)-e{P^,U^) ,44. 

The second term on the RHS of (4.4) equals the consumers income so, again, if we can 

bound the first term, we can bound the equivalent variation. 
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To do so, again consider Figure 4.1. The exact EV could be obtained if we knew 

exactly how much money we would need to give the consumer at the initial prices (Po) to 

achieve the utility at Xn. Now, the most that would be required to achieve this utility 

level is if the consumer could obtain bundle at the original prices. Thus, if the 

consumer were given - M instead of the price change, we can be certain that he 

could achieve at least the same level utility as if the price change had occurred. Thus, 

- A/provides an upper boimd on the necessary compensation. 

However, unless the consumer is unwilling to substitute any z for v, the consumer 

will be able to achieve the same level of utility as Xn provides at less than this level of 

compensation. What is the least amount of compensation that might allow the consumer 

to obtain the same utility as provide by Xn? If z and v are perfect substitutes and an 

interior solution is observed, the indifference curve between them would be a straight line 

and would be identical to the budget line defined by Pn- In this case, the consumer would 

need only his original income to achieve the new utility level. Thus, the lower bound on 

EV is simply - A/ = 0 . Unfortunately, a lower bound of zero is not particularly 

informative. Nevertheless, we can now bound EV as follows: 

where the superscript "N" indicates that only the second data point is used to construct 

these bounds. We now use the bounds on EV to potentially help tighten the bounds on 

CV. Since EV for a price decline is greater than CV, we know that an upper bound on 

EV must also be an upper bound on the CV. Thus, we can use the lower of the two upper 

(4.5) 
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bounds derived via nonparametric methods to provide an upper bound on CV. The 

bounds on CV derived using information from both data points can be written 

The superscripts on B indicate that both points are used in inferring the bounds. 

As something of an aside, note that bounds on £V can be similarly construaed 

and tightened by using information about CV. Specifically, 

The improvement of the lower bound in this case also follows from the feet that the EV 

for a price decrease equals or exceeds the CV. Clearly this might tighten the bounds 

significantly as the lower bound of - A/ = 0 is uninformative. 

Both commodity bundles considered thus far have been located on one of the 

budget constraints corresponding to the two price vectors for which the welfare change is 

being assessed. In the next section, we consider whether fiirther tightening of the bounds 

is possible if the analyst also knows what choices the consumer would make at 

intermediate price ratios. 

Bounds Based on Three or More Data Points for Each Individual 

Now suppose that the analyst knows yet a third price-quantity combination for each 

individual and suppose that that combination corresponds to a price ratio that lies 

between the initial and proposed price change. Can information about the commodity 

bimdle that the consumer chooses at such a price ratio be used to narrow the bounds on 

CV (or EV)? The answer is yes: it can raise the lower bound under some circumstances 

and lower the upper bound in all cases. 

B^ = [M- -  M)} • (4.6) 

(4.7) 
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To see how this point may raise the lower bound, turn to Figure 4.2 where we 

have depicted the original and new budget constraints (Po and ) and the corresponding 

optimal commodity bundles (Xo and Xs). We have also drawn an intermediate budget 

constraint and an optimal bimdle labeled Xi. Recall that to provide a lower bound on 

C V, we want to know what amount of income we can take away from the consumer and 

be sure that he can still attain the same level of utility with the new prices as at the 

original commodity bundle. 

As drawn, knowledge that Xi is the optimal commodity bundle at prices Pi allows 

us to increase the amount of income that can be taken away from the consumer and still 

be sure that the original utility level is obtained, thus increasing the lower bound on CV. 

To see this, note that since Xi is chosen at Pi when Xo was affordable, we know that Xi 

represents a higher level of utility than Xo and lies on a higher indifference curve than Xo. 

This, in turn, implies that if income were taken away from the consumer at the new set of 

prices (Pn) until the consumer could afiford Xi, they would still be obtaining at least as 

much utility as at Xo. Thus, an expenditure level of is sufRcient to ensure that the 

consumer is no worse off than the original utility level. Thus, we have an improved 

lower bound on CV and we can write our newly formulated lower boimds that are based 

on information from three data points as 

Thus, we have succeeded in further decreasing the interval over >^ch the true CV is 

contained. In like manner, lower bounds on the EV can be written 

(4.8) 

(4.9) 
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Figure 4.2: Expenditure Bounds with Multiple Data Points 
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At this point, it is important to point out that not all intermediate price ratios will 

provide information that can be used to raise the lower bounds. Gr^hically, the optimal 

commodity bimdle associated with Pi (Xi) must lie to the left of the line through Xo with 

a price ratio of Pn. Otherwise, no improvement on the bound generated by can be 

computed. Consumption bundles that will tighten the welfare bounds will be generated 

only when the consumer's preferences generate backward bending offer curves such that 

the new consumption bundle is cheaper than the original bimdle at the new prices. 

The addition of this third data point can also lower the upper bound on C V. 

Specifically, with a third data point, the new upper bound can be written 

To demonstrate that (4.10) constitutes an upper bound, appeal again to the fact that the 

EV for a price decrease is greater than the CV for the same price decrease. From this fact 

follows the first inequality in (4.11) 

eiP„U,)-e{P,,U,)<e{P„U{)-eiP„U,) 
< P^V .  ^  

° ' (4.11) 
= PoV, +z, -(P,v, +r,) 

= {P,-PM-

The second inequality m (4.11) follows from the fact that the expenditure necessary to 

achieve Ui at the initial prices (Po) must be less than or equal to the expenditure that 

would be required to allow the consumer to purchase the commodity bundle that achieves 

Ui at prices Pi. Based on identical reasoning, the following inequalities hold 
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e{P„Uo)-<Ps^U,)<e{P,,U^)-e{P^,Us) 
<P,v^ +z^ -M 

= Px^N +2v -{PN'^N 
= iP^-Pu>s-

(4.12) 

Summing (4.11) and (4.12) yields 

e ( P „ U o ) - e ( P ^ , U , ) < ( P , - P ,)v, + ( i P , - P ^ ) v ^ ,  (4.13) 

which establishes the new upper bound. The reasoning can be extended indefinitely so 

that all additional data points will also lower this upper bound. 

This new upper bound is strictly less than the potential upper bound determined 

by EV i.e., 

[Po - P, )v, + (P, - P^ )vj^ < {P^ - /> )v^ = P^v^ -P, v ^ +  -  M. (4.14) 

It is now possible to write lower and upper bounds on CV associated with three data 

Adding information on individual's optimal commodity bundles at a variety of 

price ratios can tighten the nonparametric bounds on CV or EV for a price change. It is 

worth reemphasizing that these boimds assume no parametric assumption; regardless of 

the preferences of the individual, as long as they conform to the basic postulates of neo-

Aithough their accuracy is certain, the ultimate value of these bounds depends on 

their widtL Bounds that are very wide will provide too little information for a policy 

' When woridng with real data, it win be necessaiy to worry about the inqdicationsafeTrars in consumer's 
optimization behavior or other reasons wIq^ the reported prices and/or quantities mzy contain random 
components. 

points 

classical consumer theory, the bounds provided must be accurate. 
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analyst and will likely be passed over in fevor of parametric estimates that provide at 

least the appearance of precision to those who use this information. 

Next, we investigate the situations imder which these bounds may generate 

relatively tight bounds on welfare change. In the next section, we focus on the effects of 

the degree of substitutability on the magnitude of the bounds. In the foiloAving section, we 

examine the improvement that additional data points generate for the boimds and the 

magnitude of the boimds relative to the point estimates and confidence intervals 

generated by parametric approaches to welfare estimation. 

The Implications of Substitutability on the Ma îtude of the Bounds 

In the previous section, the lower bound on CV was seen to exactly equal the true 

CV when the two goods are perfect complements and the upper bound was exactly the 

true CV when the two goods are perfect substitutes. These results make clear that the 

accuracy of the bounds are affected by the degree of substitutability between the good 

whose price change is being evaluated and the numeraire. To further investigate the 

consequences of substitutability on the bounds, we consider a simple numerical example 

using a CES utility flmction where a range of substitutability conditions can be examined 

by varying the magnitude of a single parameter. 

Consider the Constant Elasticity of Substitution (CES) utility framewoiic 

where, as before, z is the numeraire, v is the quantity of the environmental good, and s, p, 

and a are parameters.The CES is a convenient utility flmction to work with since the 

single parameter, s, determines the degree of substitutability between the goods. 

(4.16) 
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Figure 4.3 plots the CV for a price decrease from $30 to $6 for a hypothetical 

individual using the CES utility function over a wide range of s. The parameter a is set 

to 0.75; thus, the individual has a relatively lower preference for the environmental good 

relative to the numeraire. The substitutability parameter, s, ranges from one to infinity 

and is plotted on the horizontal axis (when s=l the QES framework generalizes to the 

Cobb-Douglas framework). The yellow line (starting just under $20,000) plots the true 

WTP value given by the CES specification. The light blue and dark blue line (the dark 

blue is overlapped by the LB2 line) are the upper and lower boimds (respectively) on 

WTP when only the original consumption bundle is known. 

If the analyst observes the consumption bundle at the proposed price change, the 

upperboimd becomes the lesser of the light blue line and the dark purple line. Also, the 

additional data point gives us the light purple line as the new lowerboimd. Clearly, this 

additional datapoint in the CES framework will not always tighten the nonparametric 

bounds. However, there is substantial potential. Adding the third datapoint (a 

consumption bundle at some intermediate price) does not raise the lowerboimd in this 

example (recall that not all such intermediate points do so). Yet it does fiirther reduce the 

upperbound (given by the brown line). 

In figure 4.4, the parameter a is set to 0.25 to represent a situation where the 

individual highly desires the environmental good. This is evidenced by the higher value 

of WTP for the price decrease in the environmental good. Notice in this case that the 

additional dat^x>ints help only for relatively high levels of substitutability. Further, in 

both figures WTP is shrinking as the substitutability parameter is increasing. This is due 
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Figure 4.3: Nonparametric Bounds as a function of substitutability in a CES Framework 
(LB and LB2 overlap for much of the range of substitutability) 
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to the &ct that the initial commodity bundle changes at different values of s. In 

particular, as s gets larger the individual moves towards the comer solution that provides 

more of the cheaper good, in this case the numeraire good. However, by varying the 

parameter a, we can influence which comer solution they choose for the given price 

change. 

Consider figure 4.5. In this diagram a=0.0025. As the substitutability parameter 

increases here, the individual moves towards the comer solution of all environmental 

goods. Thus, in this deterministic setting, we see that there is a threshold in the 

parameter settings that influence whether WTP will be rising or ^ing as the 

substitutability parameter increases. This threshold will be met for some value of a 

between (0.0025, 0.25). 

In figure 4.3, the nonparametric bounds are strictly tightening as the substitutability 

parameter is increasing. This is not the case in figure 4.4. Instead the nonparametric 

bounds initially begin widening as the substitutability parameter begins increasing to 

some level. Then, as s becomes quite large the bounds begin shrinking. 

Clearly, the deterministic experiment suggests that WTP for the price decrease 

depends largely upon the parameter values. From previous studies, we know that WTP 

differs greatly across utility specifications. However, we have also learned fi"om this 

deterministic setting that the nonparametric bounds to have the potential to provide useful 

information on the magnitude of WTP despite being ignorant of the true utility 

fiamework at the individual specific level. 
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The determimstic CES framewoik outlined above gives us insight into the potential of 

the bounds by allowing us to investigate the characteristics of utility that narrow or widen 

the bounds. However, this simple numerical exercise does not shed any light on the value 

of the nonpanunetric bounds relative to point estimates of welfare generated by 

parametric methods. If parametric methods can be accurately estimated and/or if the 

nonparametric bounds are quite wide, there is little reason to pursue research employing 

the nonparametric bounds. Alternatively, if nonparametric bounds are found to have the 

potential to be relatively narrow in practice and/or if parametric methods generate 

significant error in welfare measurement then nonparametric bounds may have an 

important role to play in welfare analysis 

A Monte Carlo Study 

Design of the Stucfy 

The purpose of the Monte Cario experiment is to explore the feasibility of the 

nonparametric method, to gauge the performance of the nonparametric bounds, and to 

compare them to welfere estimates generated by traditional parametric methods. Thus, 

the Monte Carlo experiment is designed with these three questions in mind: 

• How narrow can we expect the nonparametric bounds to be? 

• How much does the addition of data points improve (tighten) the bounds? 

• How do the nonparametric bounds compare to welfare estimates generated by 

parametric estimators? 

To shed light on the answers to these questions, simulated data is generated by 

using two different utility functions. First, we employ a utility fimction that generates 

semi-log demands of the following form: 
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TT  P'^y^ U exp 
-y§ 

(/(a + s)v-fik-R ln(v)) 

J3 + }V 
(4.17) 

where, greek letters indicate parameters and v is the environmental good (for 

concreteness we now consider it to be recreation visits) and z is again the numeraire. The 

corresponding expression for the C V for a price change of the recreation good is 

CV = --
r 

In -yljo 
p 

1 
+ — 

' r 1 
+ — In 

O 1 

r 
(4.18) 

For the Monte Carlo experiment, the parameter values in the semilog utility function are 

set at a=2, 3=-0.04, and y==-0.00002.^ The stochastic error component is distributed 

A^(0,<t^) and four different dispersion levels are examined; cr^ =0.25, 0.50, 0.75 and 

1.00. 

The second utility framework employed in the Monte Carlo data construction is 

the CES fimction used in the numerical example above (equation (4.16)). An error tenn is 

introduced into the CES additively via the "a" parameter; 

t/ = [(l-a-7)v^+(ar + 7)r^P^, (4.19) 

where ii~Uniform(-0.25,0.25). Then, the true form of recreation demand is given by 

(1 - a - tjYM V = • (4.20) 
(pc + Tj)' P' + Q.-a- T j y  P 

We set the parameter a=0.75 . To wcamine the sensitivity of the results to the degree of 

substitution, we investigate four different values of s; s=0.5,2, 5, and 20. Finally, the 

expression for CV for a price change is 

^ These patameter values were chosen because they were enq)loyed in a previous Monte Cailo study 
(Kling, 1997) ofiecieationdeniand and thQT produce "sensible" locddngnumbeis of visits. 
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CV = U'l̂ \a + TiyP"' +i\-a-Tiy '̂-p\a + rjyp"-' +(l-a-7r]ii|. (4.21) 

For each of the utility fimctions and parameter values, we generate 1,000 samples 

of300 observations each. For each observation, the simulated price is randomly drawn 

from the uniform distribution on the interval (5,55). Also, income is randomly drawn 

from the uniform distribution on the interval (5000, 85000). Note that in the semilog 

monte carlo experiment our focus is on various dispersion levels whereas in the CES case 

we focus on alternative degrees of substitutability. 

How Tight Are the Nonparametric Bounds and Haw Much Do Additioncd Data Points 

Improve the Bounds? 

As demonstrated in the theoretical sections above, bounds on welfare measures 

can be constructed with a single data point, two data points, and three or more points for 

each individual. In the first part of the Monte Carlo experiment, we investigate how the 

addition of data points (observations) for each individual in the sample can narrow the 

bounds. Although the previous numerical exercise also shed light on this question, in the 

Monte Carlo setting, we can investigate the more typical situation of a complete sample 

of differing individuals. As mentioned earlier, one possible source for such additional 

observations is via contingent behavior. Although those who are suspicious of contingent 

valuation as a reliable valuation method may discount such data, some analysts may be 

more comfortable with behavioral contingent data than willingness to pay questions. For 

example, Bockstael and McConnell [7] have recently argued that: 

Such contingent behavior studies might not suffer from many of the problems 
encountered when asking values and they would be targeted towards people who 
"behave" in the context of the problem and who would presumably not find it 
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di£5cult to imagine the behavioral changes they would make when &ced with 
different prices, different qualities, different alternatives, (p. 29) 

If contingent behavior is viewed as a reliable source of data and if nonparametric bounds 

can be constructed from this data that are sufiSciently narrow to be of practical use, there 

might be a potentially compelling case for their use in place of parametric estimates. A 

Monte Carlo experiment where there is assumed to be no measurement error associated 

with the data is an ideal environment to shed light on this question. For, if the 

nonparametric bounds are too wide to be of policy interest in this setting, they can almost 

certainly be ruled out as a viable valuation strategy when the vagaries of real data are 

considered. 

To assess the gains from adding contingent behavior data to a single observed 

data point for each observation (such as might be collected in a typical recreation demand 

study), we compute the nonparametric bounds for each Monte Cario sample and average 

the lower and upper bounds. This process is repeated for each of the samples. 

First, the upper and lower bound on CV for a price decrease associated with a 

single data point is computed.^ This is equivalent to using the information an analyst 

might typically have from a travel cost type recreation demand study. For each 

individual in the sample, the analyst would know only how many trips the individual took 

during the time period and at what price. In the rows marked "Point O" of Tables 4.1 

and 4.2, we report the bounds generated by such a procedure for both the CES and Semi

log utility functions. Results are presented for two different price changes; a 25% 

 ̂Since the CV for a piice decrease is idaitical to tbeEV for tbe inverse (Hice increase, tlie values 
in the tables can be interjneted as bounds on either measure; however, we will refer to it as a bound on CV 
for simplicity. 
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decrease and a 80% decrease. For the Semi-log demand function we report these bounds 

for four different values of CTs. For the CES, we report the bounds for four different 

values of s (the substitutability parameter). 

As can quickly be seen, the range between the lower and upper bound is 

enormous in all cases and thus of no real value from an applied policy perspective. This 

is not surprising as a single data point per individual provides little information. In the 

rows maileed "Poim N", a second data point for each individual is used (along with the 

first) to form the bounds. This point corresponds to the quantity chosen by the individual 

at the "new" price, i.e., it corresponds to point "N" in Figures 4.1 and 4.2 from the 

theoretical discussion. With the introduction of this second point, the upper bound on the 

compensating variation drops dramatically in all cases. 

In the rows marked "Point 1the third data point is used to raise the lower bound 

and lower the upper bound as described In the theoretical section above. The third data 

point is generated by determining the quantity consumed at the midpoint price between 

the initial and final price in the welfare change. Although the gains in tightening the 

interval are not nearly as large as the addition of the second point, it is clear that valuable 

gains are possible. In the case of the semi-log utility flmction, the addition of the third 

data point never raises the lower bound. This occurs because the two goods (v and x) are 

not close enough substitutes to generate the necessary conditions for the tightening of the 

lower bound (see page 6). In contrast, for the CES utility function, the necessary 

conditions are satisfied in a number of instances, thus the addition of the third data point 
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Table 4.1: Semi-Log Utility 

a. WTP for 25% reduction in price 
Theoretical 

Bounds 
0=0.25 o=0.50 0=0.75 a=l Theoretical 

Bounds II Ih II Ih II Ih II Ih 

Point 0 128.94 11305 135.65 11305 153.17 11305 179.0 11305 

Point N 128.94 142.86 135.65 163.07 153.17 199.69 179.0 265.00 

Point 1 128.94 141.90 135.65 161.96 153.17 198.30 179.0 263.09 

Point 2 128.94 141.27 135.65 161.23 153.17 197.39 179.0 261.83 

Point 3 128.94 140.96 135.65 160.86 153.17 196.94 179.0 261.21 

b. WTP for 80% reduction in price 
Theoretical 

Bounds 
0=0.25 o=0.50 0=0.75 0=1 Theoretical 

Bounds II Ih II Ih II Ih II Ih 

Point 0 432.47 37131 460.66 37131 507.31 37131 598.0 37131 

Point N 432.47 521.72 460.66 594.44 507.31 729-52 598.0 959.33 

Point 1 432.47 510.22 460.66 581.39 507.31 713.74 598.0 937.76 

Point 2 432.47 502.80 460.66 572.73 507.31 703.28 598.0 923.90 

Points 432.47 499.21 460.66 568.54 507.31 698.16 598.0 917.19 
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Table 4^: Constant Elasticity of Substitution 

a. WTP for a 25% reduction in price 
Theoretical 

Bounds 
s=0.5 s=2 s=5 S=20 Theoretical 

Bounds II Ih II Ih II Ih II Ih 

Point 0 7882 11450 98 11450 0.02 11450 0 11450 

Point N 7882 10563 98 251 0.02 0.54 0 0 

Point I 7882 10035 98 224 0.02 0.41 0 0 

Point 2 7882 9730 98 210 0.02 0.35 0 0 

Points 7882 9581 98 204 0.02 0.33 0 0 

True 8040 8389 130 188 0.04 0.28 0 0 

b. WTP for a 80% reduction in price 
Theoretical 

Bounds 
s=0.5 s=2 s=5 s=20 Theoretical 

Bounds II Ih II Ih II Ih II Ih 

Point O 25408 36882 313 36882 0.05 36882 0 36882 

Point N 25408 36882 313 9569 0.05 627 0 90 

Point I 25408 36882 468 4330 1.26 174 0 23 

Point 2 25408 36882 468 3628 1.26 164 0 23 

Point 3 25408 36379 468 3500 1.26 163 0 23 

True 28115 29205 1408 1914 9.96 42 0 1.37 
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both raises the lower bound and lowers the upper bound. However, even when the lower 

bound remains unchanged, the range between the lower and upper bound is small enough 

to be of use in certain policy situations. 

In the rows marked "Point 2" and 'Toint 3", two additional price/quantity 

combinations are used to tighten the bounds. These combinations are determined by 

computing the midpoints between the point 1 price and the initial price and the final 

price, respectively. Again, the nonparametric bounds are potentially tightened by this 

additional information. The gains come primarily fi-om lowering the upperbound on 

WTP. Essentially, each new data point will necessarily lower the upperbound as we are 

able to trace out the individuals demand function. If we leam of every commodity bundle 

the individual would choose for all intermediate prices, our upperbound on WTP would 

be precisely the individual's Marshallian consumer surplus. The individual's consumer 

surplus is the best we can do in deriving an upperbound on WTP for the price decrease in 

the nonparametric setting. 

Our ability to raise the lowerbound hinges on the shape of the individual's ofifer-curve. 

Specifically, if the offer curve is backward bending for some intermediate price changes 

and we leam of commodity bundles chosen at these prices, then we may raise the 

lowerbound on WTP. A backward bending offer curve is a necessary but not sufficient 

condition for raising the lowerbound on WTP for a gjven price change. Unlike the case 

for lowering the upperbound, simply having additional intermediate cotmnodity bimdles 

will not necessarily raise the lowerboimd. This is one reason we chose to examine the 

CES firamework: we were assured of backward bending offer-curves. Recall that a 
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backward bending offer curve implies that the substitution effect dominates the income 

effect. 

These Monte Carlo results strongly suggest that with the addition of at least one 

more, and possibly several, data points, nonparametric botmds can be constructed that are 

narrow enough to be truly informative to a policy maker. Next, we consider how these 

bounds compare to parametric estimates generated by the same amoimt of information. 

How Do the Nonpcarcmetric Bounds Compare to Standard Parametric Estimates? 

For purposes of this portion of the Monte Carlo study, we assume that the 

researcher has access to a data set with three data points for each individual in the 

sample, corresponding to points O, N, and 1 from the previous section. Again, we have 

in mind that the researcher may have undertaken a contingent behavior survey to collect 

such data and we will again abstract from measurement error or other problems 

potentially associated with such data. Here we ask how well the researcher could do with 

such a data set in estimating CV using the nonparametric boimds relative to employing a 

parametric demand model (such as a typical travel cost type model). 

For each sample, we estiniiate each of three parametric demand functions; 

Log-Unear: ln(v)=a + ;ffhi(p)+rhi(^/)+f. 

Semi-log: ln(v) = a + fiP-¥ yM + s, and (4.22) 

Linear: v = a + fiP + yM + s, 

Where the greek letters again correspond to parameters. These demand functions were 

chosen due to their common use in recreation demand modeling. To estimate the models, 

we include all three data points for each individual that are used in constructing the 
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nonparametric bounds. Thus, the original point plus the "contingent behavior" data are 

used in constructing both the nonparametric bounds and the parametric estimates. In this 

way, the parametric and nonparametric methods are both confronted with the same 

amoimt of information. To incorporate the fact that the three observations for each 

individual are not independent"^ (that is, j = where i indexes individuals 

and j indexes observations), we estimate the models in (4.22) using a standard Feasible 

Generalized Least Square Estimators to capture this correlation.^ 

After estimating each model, we calculate the average estimated CV for each 

flmctional form and do so for each of the 1000 repetitions. Next, we order the respective 

averages from smallest to largest and construct empirical 95% confidence intervals for 

each method. 

To provide a benchmark against which to compare both the nonparametric bounds 

and the parametric estimates, we compute the true compensating variation for a proposed 

price decrease and average these over all individuals in the simulated samples and over 

the 1000 Monte Carlo trials. We also order the distribution of the 1000 sample average 

true CVs from highest to lowest and identify the fifth and ninety-fifth percentile of that 

distribution. This provides the 95% confidence interval for the true distribution against 

which the parametric confidence intervals and the nonparametric bounds can be assessed. 

Table 4.3 contains the point estimates, confidence intervals, nonparametric 

boimds and true CV and bounds for the Semi-log utility function. Again, four different 

* In real data, the conelatian across individuals nuQ^aiise from omitted vanablesqiedfic to individiials or 
any mmiber of measurement problems. la our simulated data, coneladon across individnals arises fiom the 
faia that individuals have different tnie parameters values fiom one another. 

 ̂ Appendix 1 contains the derivation and e3q)lanati<Hi of the estimator. 
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standard deviations of the error are considered. We also report the average R^s for the 

parametric estimates to provide a sense of the goodness-of-fit of the parametric models to 

the data (and thus how "typical" these scenarios might be). 

First note that the nonparametric bounds are always (by construction) true bounds 

on the true intervals. In contrast, the parametric bounds are not. Interestingly, even the 

boimds generating the correct functional form (the semi-log reported in line three) often 

generate confidence boimds that are not true bounds in that estimated confidence 

intervals he within the true intervals.^ 

It is perhaps most constructive to compare the nonparametric bounds with the semi

log demand function boimds. Using a parametric method, an applied researcher could 

expect to do no better than if he were using the correct functional form. As one might 

expect, the semi-log demand confidence intervals are tighter than the nonparametric 

bounds (although in a number of cases they are too tight!). However, even for relatively 

large price changes (80% decrease), the nonparametric bounds are relatively close 

generating intervals that are only about 33% wider than the semi-log demand intervals 

and 42% wider than the true intervals. 

Table 4.4 provides the results for the CES utility function. In this case, there is no 

parametric demand function that is an exact match for the true demand fimction, although 

the log-linear represents a special case of the CES demand. In &ct, this situation strikes 

us as the most accurate representation of the typical study. 

 ̂This occurs because the semi-log model is misq)ecified in that the enor enters additively in the demand 
function. 
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Table 4J5: Semi-Log Utility 

a. WTP for a 25% reduction in price 
Models 0=0.25 o=0.50 Models 

II AVG Ih II AVG Ih 

Linear TCM 136.0 140.2 144.5 0.70 143.7 153.5 164.4 0.37 

Log-Linear TCM 135.1 139.3 143.6 0.70 142.2 152.6 163.3 0.42 

Semi-Log TCM 135.6 139.9 144.2 0.78 142.9 153.1 164.3 0.47 

Nonparametric 133.1 146.1 140.1 166.7 

True 135.2 139.9 144.4 142.3 153.1 164.6 

b. WTP for a 25% reduction in price 
Models 0=0.75 o=l 

II AVG Ih R' II AVG Ih R' 

Linear TCM 162.2 180.0 201.5 0.19 190.2 223.0 263.8 0.10 

Log-Linear TCM 159.7 178.8 201.6 0.26 186.9 221.0 261.2 0.17 

Semi-Log TCM 160.6 179.2 201.3 0.29 188.2 221.2 259.4 0.19 

Nonparametric 158.1 205.7 184.4 268.6 

True 160.4 179.4 202.8 186.7 221.5 262.5 
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Table AJ5: (Continued) 

c. WTP for a 80% reduction m price 
Models a=0^5 o=0.50 Models 

II AVG Ih II AVG Ih 

Linear TCM 429.5 445.8 462.1 0.71 453.8 489.8 526.7 0.37 

Log-Linear TCM 430.2 445.3 461.8 0.71 453.3 489.0 526.6 0.43 

Semî Log TCM 426.6 441.6 457.7 0.78 449.6 484.5 522.6 0.48 

Nonpctrametric 405.6 474.6 429.2 541.8 

True 426.9 441.5 457.1 451.0 484.8 520.1 

d. WTP for a 80% reduction in price 
Models 0=0.75 C5=l Models 

II AVG Ih II AVG Ih R^ 

Linear TCM 502.9 572.9 643.8 0.19 589.8 707.1 851.7 0.10 

Log-Linear TCM 504.2 571.5 642.4 0.26 591.0 700.6 827.2 0.17 

Semi-Log TCM 494.4 565.2 633.6 0.29 584.8 690.5 809.9 0.19 

Nonparametric 479.4 664.2 557.4 871.4 

True 502.0 564.9 631.8 581.3 690.6 813.1 
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Again, there are a number of estimated confidence intervals that lie within the true 

intervals. Even more strikingly, in some cases (identified in the table in italics) the point 

estimates themselves lie outside of the true interval. Thus, by using a parametric point 

estimate an analyst might actually be reporting a welfare measure that is not even within 

the true 95% confidence interval. This of course is not news to applied researchers: 

incorrect fimctional forms are well known to potentially generate welfare measures with 

large error. More to the point is that an alternative that does not require the assumption 

of a particular functional form exists and generates ranges that, at least in some cases, are 

likely to be narrow enough for policy making. 

As a final measure of the value of the nonparametric boimds, we compute the mean 

percent error associated with using the midpoint of the nonparametric bounds as an 

estimate of the average CV and compare these to the mean percent errors associated with 

the point estimates fi*om the parametric models. Table 4.S contains these results. 

Strikingly, the midpoint of the nonparametric bounds provides a mean percent error of 

the same order of magnitude as the parametric estimators. And, in two out of the three 

cases examined the midpoint generates the lowest mean percent error! 

Nonparametric Bounds and Standard Parametric Estimators When the Population 

Preference Structure is Heterogeneous 

An even more realistic situation than one in which recreationists have random 

parameters is one in which the population consists of individuals with different utility 

structures. To consider this situation, we allow the population we are sampling fi'om to 

consist of individuals with both semilog utility and CES utility. Each type comprises 
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Table 4.4: Constant Elasticity of Substitution 

a. WTP for a 25% reduction in price 
Models s=0.5 s=2 Models 

II AVG Ih II AVG ih 

Linear TCM 6347 6519 6674 0.67 121 160 204 0.18 

Log-Linear TCM 3786 5109 6981 0.92 70 101 160 0.25 

Semi-Log TCM 5791 5924 6038 0.82 81 99 117 0.23 

Nonparametric 7687 9352 89 181 

True 7839 8021 8183 118 142 167 

b. WTP for a 25% reduction in price 
Models s=5 s=20 Models 

II AVG Ih II AVG Ih R^ 

Linear TCM 0.06 0.21 0.41 0.04 -85634 10965 146801 0 

Log-Linear TCM 0.02 0.06 0.11 0.21 0 0 0 0.21 

Semi-Log TCM 0.01 0.04 0.08 0.19 0 0 0 0.19 

Nonparametric 0.02 0.22 0 0 0 

True 0.03 0.10 0.19 0 0 0 



www.manaraa.com

Table 4.4: (Continued) 

c. WTP for a 80% reduction in price 
Models s=0.5 s=2 Models 

II AVG Ih II AVG Ih R^ 

Linear TCM 25864 26686 27469 0.48 2697 3640 4655 0.07 

Log-Linear TCM 15183 16601 18086 0.92 538 633 747 0.37 

Semi-Log TCM 19754 20214 20672 0.80 632 771 912 0.31 

Nonpcarcanetric 23845 34185 450 3437 

True 26406 26936 27453 1355 1613 1872 

d. WTP for a 80% reduction in price 
Models s=5 s=20 Models 

II AVG Ih II AVG Ih R^ 

Linear TCM 111 490 998 0.0 
1 

0.01 50.77 291 0 

Log-Linear TCM 0.74 2.74 5.58 0.3 
4 

0 0 0 0.34 

Semi-Log TCM 0.22 0.47 0.82 00 
o
 0 0 0 0.29 

Nonparcanetric 1.48 289 0 72.94 

True 11.57 39.64 76.20 0 0.76 4.68 
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50% of the population. The parameter values for the semi-log specification are as given 

above with Oe being 0.015625; 0.0625; and 0.125. For the CES firamework the 

parameters are a=0.55, s=2.5 and ii~U[-0.00125,0.00125]. 

Table 4.6 contains the results of this simulation experiment. Note in particular that 

despite the relatively high values of the parametric model's confidence intervals do 

not contain any of the true mean values of WTP. In contrast, the nonparametric bounds 

are true bounds and for this particular parametrization, the width of the nonparametric 

bounds are quite tight. We think these results provide a compelling case for fiirther 

investigation of nonparametric methods. 

Final Remarks on the Value of Nonparametric Bounds on Welfare 

In this paper, we have presented simple methods for constructing nonparametric bounds 

on compensating or equivalent variation for price changes based on nonparametric 

methods. We began by adopting the methods developed by Varian and derived 

additional results allowing significant tightening of the boimds. These bounds have the 

potential to provide an alternative valuation method to standard parametric estimation of 

recreation demand. We also investigate the possible magnitude of these bounds using 

numerical examples and simulated data. 

The ultimate usefulness of the bounds derived here will depend upon how tight the 

boimds can be constructed for real data and on whether the data necessary to compute 

such bounds can be obtained and deemed reliable. In our Monte Carlo analysis, we have 

demonstrated that there are situations imder which the first of these conditions will hold; 
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Table 4.5: Mean Percent Error in Parametric Average Point Estimates and the Nfidpoint 
of the Nonparametric Bounds in the CES framework 

Model Mean Percent Error Model 
s=2 s=2.5 s=5 

Linear TCM 4.3% 17.5% 69.3% 

Log-Linear TCM -28.4% -29.7% -38.7% 

Semi-Log TCM -31.9% -36.9% -58.5% 

Nonparametric 
Bounds 

-8.0% -10.2% -16.0% 

bounds constructed without reference to parametric demand specifications can yield 

intervals that are narrow enough for policy purposes. However, questions concerning the 

reliability of contingent behavior data or the possibilities of collecting time series data 

must await the confrontation of a real data set. 

In addition, as we pointed out initially, the above prescribed methodology is valid only 

for a non-inferior good. That is, the income effect must be non-negative. In some cases, 

this may be problematic as empirical research on recreation goods has found evidence of 

negative income effects for certain resources. However, a closely related methodology 

can be developed that provides a tightening of the Varian bounds in this case. The 

difference stems from the reversal of the inequality between CV and EV for a price 

change in the case of an inferior good. Using this relationship, we could narrow the 
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Table 4.6; Model Performance with Heterogeneous Population Preferences 

a. WTP for a 20% reduction in price 
Models ac=0.015625 <78=0.0625 Models 

ii AVG ih ii AVG ih le 

Linear TCM 170.3 170.7 171.1 0.11 181.2 182.0 182.8 0.19 

Log-Linear TCM -1049 -823 -648 0.50 77.27 80.0 82.78 0.54 

Semi-Log TCM 130.3 130.6 130.8 0.49 130.9 131.2 132.9 0.49 

Theoretical Bounds 108.7 120.1 131.5 107.0 119.5 132.1 

True 125.4 125.7 125.9 124.5 125.4 126.2 

b. WTP for a 20% reduction in price 
Models CTe=0.125 Models 

II AVG Ih 

Linear TCM 171.1 172.5 173.9 0.20 

Log-Linear TCM 151.4 159.7 168.6 0.56 

Send-Log TCM 127.9 129.8 131.6 0.54 

Theoretical Bounds 104.2 119.3 134.4 

True 124.6 126.2 127.6 
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nonparametric boimds on WTP by considering the additional datapoints. The key 

difficulty with this divergence of methodology is that the analyst would need to make a 

decision regarding the income effect on an observation-by-observation level. A 

misclassification of one observation may cause the constructed nonparametric bounds to 

be incorrect for that observation. Propogating this dilemma throughout the dataset may 

leave the analyst with incorrect boimds on true WTP. However, this conflict is no less 

troublesome for parametric models, which impose a single parameter value for the 

income efifect on the entire sample. 

Nonparametric bounds on welfare measures for the case of non-inferior goods are 

appealing in that they require absolutely no assumptions about utility functions or error 

structures. They also do not require assuming that all individuals in a sample have the 

same preference structures or parameter values. Such liberty is heartening, but comes at 

a cost. Rather than being able to report precise-sounding estimates of welfare, bounds 

convey uncertainty. However, as the results of these Monte Carlo experiments suggest, 

the "certainty" conveyed by pomt estimates from traditional parametric estimators may be 

misleading. 

The results using nonparametric bounds developed here constitute a first look at 

applying nonparametric methods to bound welfiire measures for nonmarket goods. Based 

on the theoretical and simulated results presented here, we are optimistic that additional 

work in this area will yield large returns. The ability to provide policy makers with tight 

bounds on welfare measures for nonmarket goods that are free of fimctional form 

assumptions is an appealing proposition. 
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APPENDIX 

FEASIBLE GENERALIZED LEAST SQUARES ESTIMATOR 

Theoretically, it is likely that an individual's noise terms are correlated as we observe 

her chosen commodity bundles at various prices. Consider the individual's stated 

demand at prices Pi. 

liM,p)=Xp+s, (A.1) 

While the individual has precise information concerning the number of trips she will take 

at price Pi, the researcher does not observe this information. Now, consider her demand 

at prices P2. 

(A.2) 

For this individual, it is reasonable to expect that; 

£(£;£.) *0. (A.3) 

Thus, when we estimate the TCM, we should allow for this correlation. Note, it is still 

the case that individual t's error term is independent of individual j' s error term. Also, it 

is reasonable to assume that each individual comes from the identical distribution. This 

implies that the correlation parameter is constant across the population. With these 

assumptions in place, we may now consider a Feasible Generalized Least Squares 

approach to estimating the TCM. 

Formally, the previous remarks can be expressed as: 

V/ ^ s,Ei^ei,s^ = 0. and and 
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(A.4) 

0-23^« 1 

Q = = 

The first subscript indicates which subsample the observation is from while the second 

subscript indicates the individual. As we can directly see in Eq. (A.4), each individual's 

decisions are correlated. The formulation of the TCM (for the case of a Linear Model) 

allows us to perform the following stacked-regression (Seemingly Unrelated Regression): 

(A.5) 
( K ]  "l P, M' r \ a r \ 

= 1 Pj M P  + 

1 P3 M 

Step 1: Estimate P  = { X X ) ~ ^  X Y  and obtain 

Step 2; Construct: Q = 

where 

Z r=l IV " j=I 

^72  ̂
n ^23^ n 

^ 1 n ^ 

\ " y 
n-\ 

(A-6) 

(A-7) 

Step 3: Estimate: fipcLs ~ . 

Step 4: Estimate CV using the parameter estimates from Step (3). 

(A-8) 

(A.9) 
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